

Machines and Algorithms
http://www.knovell.org/mna

148

Research Article

Min Max Merge: A Novel Comparison based Sorting Technique for Data-

Intensive Processing

Abbas Mubarak1, *

1Department of Computer Science, Institute of Southern Punjab, Multan, 60000, Pakistan
*Corresponding Author: Abbas Mubarak. Email: abbas007sheikh@gmail.com

Received: 02 August 2024; Revised: 3 September 2024; Accepted: 30 September 2024; Published: 10 October 2024

AID: 003-03-000041

Abstract: Sorting is significant as it is a prerequisite for many applications and

functions. It is one of the oldest topics in literature which is still as important as it

was in the beginning. Researchers are still working to design more efficient sorting

methods either by improving existing sorting methods by reducing time

complexity, space complexity, comparisons and shift operations or formulating

new ones as sorting is very essential for most used applications such as databases

for extracting useful information efficiently. This paper presents a novel

comparison-based sorting method named as min max merge sort which works by

merging groups of numbers into one group. The Proposed sorting algorithm is not

only better than some old classical comparison-based sorting algorithms but it also

performs better than some latest presented sorting methods. The basic idea behind

proposed sorting algorithm is to divide the input array into different groups and

then perform their recursive merging on the basis of their maximum and minimum

entries, which circumvents unnecessary data shifts and comparisons. The speed of

proposed algorithm is comparatively faster than the traditional sorting methods, as

it exploits localized minimum and maximum data entries instead of recursively

scanning entire input array. This algorithm exploits linear auxiliary space, as it

performs in-place operations for combining groups in same array. Space

complexity of proposed sorting method is O(n) as it does not require extra memory

space. Performance comparison of proposed method with other sorts shows the

superiority of our proposed method.

Keywords: Sorting; 2mm Sort; Time Efficient; Sorting Complexity;

1. Introduction

 There are several types of algorithms, such as sorting algorithms, searching algorithms, compression

algorithms and path finding algorithms [1]. Among the various branches of algorithms sorting is an

important domain which is the oldest and most studied module in computer science [2]. The rearrangement

of input data in a specific manner is known as sorting [3], [4]. Since 1950s, computer scientists are working

on various sorting algorithms to improve the complexity of old sorting methods in terms of space and time

complexity [5]–[8]. A number of top computer scientists extensively studied this topic such as Turing award

winner Tony Hoare, Von Neumann and Donald Knuth [9]. Sorting is integral part of approximately all

computer and mobile applications. All software’s uses different sorting methods however user always

concern with fast sorting [10]. People always consider two things in all sorting functions, speed of sorting

algorithm and simplicity of algorithm [1].

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

149

 Sorting can be performed on numbers, strings or records containing both numbers and strings like IDs,

names, or departments, etc. [11]. Each sorting algorithm has unique properties that add value to the specific

function they are used to perform [12]. Every sort is not appropriate for every kind of data [11]. Every

algorithm has its own best as well as worst case. Therefore, to find out best sorting method according to

Big O is difficult [13]. A study is essential in order to develop or make new sorting algorithm, because not

all algorithm works efficiently for the same problem [14]. As the world has become global village and

information is increasing rapidly, therefore importance of efficient sorting has also increase [4]. To get

efficient search results from big databases also requires data in specific order [15]. The way of sorting data

is very important due to impact of execution time, how elements are swapped, compared and arranged is

dependent of technique of particular sorting algorithm [1], [16].

 Enormous number of sorting algorithms are in use to date. Out of which, bubble sort is used extensively

as it is simple and spontaneous however it is not very efficient. Normally a sorting algorithm consists of

comparison, swap, and assignment operations [17]. Every algorithm has different time complexity [10].

Sorting can be applied in three ways: vector sort, (list) table sort and address sort, depending on the data

storage policy [18]. This study, use array data structure to store data for sorting where data can be in numeric

or character form [19]. Sorting algorithms for serial computing (random access machines) allow only one

operation to execute at a time. The sorting algorithms based on a comparison network model of computation,

performed many operations simultaneously [3].

2. Literature Review

2.1. Overview of Sorting Methods

 Sorting methods can be divided into two major groups: specialized sorts and general sorts. Each sorting

algorithm possesses some particular properties i.e. each particular algorithm performs best when data is of

specific type like small numbers, floating point numbers, big numbers and repeated numbers. Apart from

the programming work, the availability of main memory, the size of disc or tape units, and the degree of

list already ordering consideration in selecting a sorting method. Most of the sorting techniques are thus

problem specific, that is, they perform effectively on some particular type of data or problem [11], [17].

From memory consumption standpoint, some sorting techniques require more space in memory than others;

yet, these techniques allow faster sorting. Consequently, the choice of these methods relies on the location

and purpose of the sorting of the inputs [1].

 The comparison results can be obtained in three ways: 1, Comparison of execution time 2, Comparison

of total number of comparisons and 3, Comparison of total swapping frequency [19]. Among the numerous

sorting techniques available, the one optimal for a given application depends on several variables like data

size, data type, and element distribution in a data collection. The efficiency of the sorting algorithm is also

dynamically influenced by numerous factors that may be aggregated as the number of comparisons (for

comparison sorting), number of swaps (for in place sorting), memory utilization and recursion [20].

2.2. Categorization of Sorting Methods

Figure 1: Categorization of Sorting Algorithms

 Researchers have categorized the sorting methods in different categories i.e., depicted in figure 1 above

[3], [12], [14], [18], [20]–[25].

Sorting Algorithms

Internal
and

External

Stable and
not stable

Adaptive
and non
adaptive

Time
complexity

Space
complexity

Comparison
and non

comparison

Online and
not online

Data
sorting

technique

Approriate
for which
data size

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

150

2.2.1. Internal and External Sorting

 Sorting method either do internal or external sorting. This is a key aspect for determining computational

cost of sorting method. If a sorting function is performing sorting in Random Access Memory (RAM),

which is also known as primary memory, then it is called internal sorting, whereas if the sorting function is

using external memory, which is also known as secondary memory, then it is called externals sorting. In

internal sorting, input numbers first load in main memory RAM and then processed inside RAM. Usually,

internal sorting is much faster as it does not require data to be fetched from outside RAM. Some examples

of internal sorting are 2mm sort, MMBPSS sort, Bubble sort, Min-Finder sort, Insertion sort and Selection

sort [22]. While sorting algorithms which follows external sorting mechanism first brought data into

primary memory from secondary storage and sorting is done. The process of fetching input data continuous

during the sorting process as RAM sometimes could not store all data when the input size is too big. Heap

sort, distribution sort and external merge sort are examples of external sorting.

2.2.2. Stable and Non-Stable Sorting

 Some sorting methods are in the category of stable sorts while some are called not stable sorting

algorithm. A sorting algorithm which retains the original input order after applying sorting process is known

to be stable sorting algorithm. Stable sorting algorithm is needed where we have to retain sequence of equal

values. For example, line of people waiting for some process according to their ages i.e. person with more

age will be processed earlier but due to equal age stable sort will preserve the original sequence record i.e.

first come first serve. Whereas those who are not stable sorting algorithms can change the place of

occurrences of equal values in resultant list. Stability is usually not required when all the elements are

different. Insertion sort, merge sort, bubble sort and counting sort are examples of stable sorting algorithms

while heap sort, quick sort, selection sort and shell sort are examples of not stable sorting algorithms.

2.2.3. Adaptive and Non-Adaptive Sorting

 An adaptive sorting algorithm is one that takes advantage of particular input sequence resulted decrease

in time complexity. Insertion sort is an example of adaptive sort. It performs very fast when input data is

nearly sorted. Quick sort is another example of adaptive sorting. Its time complexity reflects in different

variation of input data such as random, sorted and reverse sorted.

2.2.4. Time and Space Complexity

 According to time complexity sorting algorithms can majorly be divided into two groups i.e. O(nlogn)

and O(n2). Insertion Sort, Bubble Sort, MinFinder and Selection Sort and 2mm sort comes under N2 family

while heap sort and quick sort belongs to time complexity O(nlogn). Space complexity determines the

memory space taken by any algorithm during execution, and therefore this is an important aspect in time

complexity. Space complexity of various algorithms can be different and the most efficient are those with

less space.

2.2.5. Comparison and Non-Comparison Sorting

 In comparison-based sorting algorithm, sorting is done by comparing numbers with each other to find

minimum or maximum number for its proper position. Insertion, Quick and Bubble sort are some examples

of comparison-based sorting. While in non-comparison-based sorting numbers comparison is not done and

numbers are sorted using some other technique. Bucket and Radix sort are examples of non-comparison-

based sorting.

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

151

2.2.6. Online and Offline Sorting

 A sorting method that can work at the time of input given and full array of numbers is not required to

input before processing, this process is known as online sorting. Whereas in offline sorting the whole input

must be entered before algorithms processing. Insertion sort is an example of online sorting.

2.3. Characteristics of Good Sorting Algorithm

Some important characteristics of algorithm are [14], [26].

• Finiteness: It must be stopped after execution of restricted numbers of steps.

• Definiteness: All steps of an algorithm must be unambiguous and clearly defined.

• Input: The algorithm must have input values from a definite set.

• Output: An algorithm must produce some output form the given input.

• Effectiveness: The algorithm should execute each step exactly using a certain amount of time.

• Correctness: The algorithm must produce the correct output values for every finite set of inputs.

2.4. Sorting Algorithms Applications

 Many algorithms, in addition to their primary function of sorting, also make use of a variety of methods

to sort lists as a preparatory step in order to cut down on the amount of time it takes for them to carry out

their tasks [20]. Sorting is also significant for searching, merging and normalization [10], [12], [14], [17],

[18]. Successful sorting is essential to improve the utilization of another algorithm [23]. Sorting is also used

in Central Processing Unit (CPU) scheduling in Operating system, recommendation system based on search

time, Television channels sorted based on view time [27]. Sorting is inevitable in query retrieval and

different types of join such as sort merge join [15]. Database query processing needs algorithms for

duplicate removal, grouping, and aggregation, whereas in-stream aggregation is most efficient by far but

requires sorted input [28].

3. Motivation

 The author’s in [1] presented a novel sorting algorithm which sorts the input list without comparisons,

however it performs some manipulations with array indices for the purpose of sorting. The proposed sorting

method in [1] uses two arrays for input sorting and two arrays for calculating repeated values. The drawback

of above-mentioned sorting method is the extra usage of memory space [1]. The author’s in [19] proposed

new variant of selection sort algorithm called MMBPSS and it sorts the input list by finding out minimum

and maximum numbers from first and second half of input list separately. It than compares the obtained

numbers of both halves to find out minimum and maximum number of complete lists. The drawback of this

algorithm is that it finds 4 numbers in each iteration and uses only 02 numbers. The authors in [2] brought

a new variant of Timsort algorithm named as adaptive shivers sort. Its computational cost and number of

comparisons are less than Timsort algorithms. The author’s in [29] presented a novel comparison free

sorting method with input K-bit binary bus. It operates on one-hot weight representation. For example,

element 5 in binary is 101 whose one-hot representation is 100000. This binary to one-hot representation

can be done using conventional one-hot decoder [29]. The authors in [30] introduced a new sorting method

min-max sorting algorithm which works by finding minimum and maximum number form the input list and

adjust them at first and last index of the list [6].

4. Review of 2mm Sorting Method

 2mm sorting method is a comparison-based sorting method. In one cycle it changes 02 numbers as

briefed in Pseudo Code below.

2mm Pseudo Code [22]

“Length size of (array)

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

152

 midindexLength/2

 minindex0

 maxindexLength -1

 min a [minindex]

 max a [minindex]

 minloc maxloc0

For i= minindex+1 to midindex

 If a[i] <min

 mina[i]

 minloci

 End If

 If a[i]>max

 maxa[i]

 maxloci

 End If

 exchange a[minindex] with a[minloc]

 exchange a[midindex] with a[maxloc]

End For loop

 min a [midindex+1]

 max a [midindex+1]

For i= midindex+2 to maxindex

 If a[i] <min

 mina[i]

 minloci

 End If

 If a[i]>max

 maxa[i]

 maxloci

 End If

 exchange a[midindex+1] with a[minloc]

 exchange a[maxindex] with a[maxloc]

End For loop

 minindex0

 maxindexLength -1

 min a [minindex]

 max a [maxindex]

 From beginning to mid index and mid + 1 to end index, 2mm determines minimum and maximum

numbers. Thus, it determines minimum and maximum number of lists by comparing minimum and

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

153

maximum numbers to ascertain minimum and maximum numbers of full array [22]. Next iterations save

the previously discovered numbers and follow the same continuous process until all numbers are arranged.

 Initially some variables are initializing. Then a for loop will execute from first half of array and another

for loop will execute for another half of array. Each for loop will find minimum and maximum numbers of

respective sub arrays and adjusts them at first and last index of that sub part of array. The above code will

make the input list executable for next mail while loop processing. The main while loop required the input

list in a manner where minimum and maximum numbers needs to be adjusted at each sub part of array for

execution of one of the four cases inside main while loop. After the above code execution there can be 04

possibilities of array therefore for each possibility while loop have 04 cases and respective case only will

be executed after if decision. One case is where both maximum and minimum numbers are already at their

correct positions i.e. minimum number at first index and maximum number at last position. Second case is

both numbers are not at their positions i.e. minimum number at mid+1 index and maximum number is at

mid index. Third case is where both maximum and minimum numbers of whole array are at first sub array

and last case is where both numbers are at second sub arrays [22].

 While (minindex < midindex-1)

 {

 If (min<=a[midindex+1])

 {

 if(max>=A[midindex]

 {

 Case1

 }

 Else

 {

 Case 2

 }

 }

 Else

 {

 If(max>=a[midindex])

 {

 Case 3

 }

 Else

 {

 Case 4

 }

 }

 }

5. Proposed Algorithm - Min Max Merge Algorithm

 The proposed sorting algorithm belongs to comparison-based family and it uses preprocessing presented

in [31]. The basic operation in comparison-based sorting method is comparison of two input elements [32].

In its initial phase after applying preprocessing, it first sorts the input array into groups of two consecutive

elements by comparing them. It than merge the input list elements in multiplication of 2 i.e. first sort group

of two elements, then combine two groups and sort 4 elements, following up combine two groups of 4

element and sort 8 elements and same process continues until all elements are not sorted. In case of

remaining last elements which are left without any group it adjusts them into previous groups. For example,

in the input list of 10 elements when min max merge will make group of 4 elements than last 2 element will

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

154

be adjust with second group i.e. index 4 to 7 where index starts from 0. As min max merge is not use

additional array for merging process therefore it combines group of elements in the same array by bubbling

the elements. Min max merge 2mm sort min max formula and merge sort merging technique for sorting

process.

 At Mendeley Data the source code of Min Max Merge sorting algorithm is available

(https://dx.doi.org/10.17632/sjxbcn97n6.1)

Figure 1: Dry-Run of Proposed Sorting Mechanism

5.1. Mathematical Analysis

 Time complexity for applying data preprocessing as adapted by the study [31], is calculated below in

equation 1 .

𝑇(𝑛) = 𝑂 (
𝑛

2
) + O (

n

2
− 3) + O(

n

2
− 3) + O(

n

4
+ 1) + O(

n

2
) + O(

n

2
− 3) + O(

n

2
− 3)

𝑇(𝑛) = 𝐶 + (
2𝑛 + 2𝑛 − 12 + 2𝑛 − 12 + 𝑛 + 4 + 2𝑛 + 2𝑛 − 12 + 2𝑛 − 12

4
)

𝑇(𝑛) = 𝐶 + (
13𝑛 − 44

4
)

𝑇(𝑛) = Ω(𝑛) (1)

 Time complexity for proposed method has been calculated below in equation 2. To sort input list in the

manner of minimum and maximum O (
n

2
) will execute. Then loop will be executed to adjust group of 4

numbers and will execute (
n

4
) times and it will execute (

n

4
) times for whole array. Time complexity will be,

Adjust last 2 elements with previous group
1 2 3 4 5 6 7 8 9 10

Combine two groups of 4 elements

1 2 3 4 5 6 9 10 7 8

Adjust last 2 elements with previous group

1 5 9 10 2 3 4 6 7 8

Combine two groups of 2 elements
1 5 9 10 2 3 4 8 6 7

Group of two elements where first element is minimum and second is maximum

5 10 1 9 2 3 4 8 6 7

Original Input Array
10 5 1 9 2 3 8 4 7 6

https://dx.doi.org/10.17632/sjxbcn97n6.1

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

155

𝑇(𝑛) = 𝑂 (
𝑛

2
) + (

𝑛

4
) (
𝑛

4
) + (

𝑛

8
)(
𝑛

8
) + (

𝑛

16
) (

𝑛

16
) +⋯(

𝑛

𝑛
) . 1

𝑇(𝑛) = 𝑂 (
𝑛

2
) + (

𝑛2

16
) + (

𝑛2

64
) + (

𝑛2

256
) +⋯1

𝑇(𝑛) = 𝑂(
128𝑛 + 16𝑛2 + 4𝑛2 + 𝑛2

256
) +⋯1

𝑇(𝑛) = 𝑂 (
128𝑛 + 21𝑛2

256
) +⋯1

𝑇(𝑛) = 𝑂(𝑛2) (2)

6. Results and Discussion

 In order to accomplish the task of reducing the amount of computational complexity and time required

to carry out swapping, comparison, and assignment operations, an efficient sorting algorithm is being

developed [4]. The experiment results of insertion, bubble, selection, MMBPSS, MinFinder and 2mm were

taken for comparison from our preceding study [22]. These results are compared with our proposed sorting

algorithm results.

Table 1: Computational Time analysis of different sorting algorithms in seconds on random input data

 Sorts |

input

Bubble Selection Insertion MMBPSS MinFinder 2mm Min max

merge

100 0.000727 0.0057 0.0047 0.0051 0.0052 0.000333 0.0010053

1000 0.001999 0.0009994 0.0009994 0.0010068 0.002001 0.000999 0.0249867

100000 27.5589 11.3939 7.00767 10.8788 16.6568 4.16842 2.13268

200000 114.27 46.2444 29.046 27.5309 66.729 18.0029 8.54076

300000 257.078 104.649 64.0444 62.0226 148.685 41.0046 19.1262

400000 458.822 185.428 113.453 109.771 268.054 73.2097 33.8753

500000 851.909 250.735 173.653 181.682 393.721 111.081 89.8946

Table 2: Computational Time Analysis on Reverse Data to analyze Worst Case

Input|

Sorts

Insertion Bubble Selection MinFinder MMBPSS 2mm Min max

merge

1000 0.0019997 0.002001 0.0019988 0.002 0.0010068 0.0009986 0.0001

10000 0.137915 0.176891 0.118927 0.235857 0.0699651 0.0579659 0.0007

100000 14.0323 17.806 12.7451 23.1758 6.55928 4.90797 0.0019977

200000 57.1027 72.666 48.548 92.0527 26.2981 19.7298 0.003998

300000 129.583 164.516 109.16 210.879 59.578 44.2776 0.006995

400000 225.351 291.462 195.492 366.052 106.495 78.3613 0.007995

500000 371.548 538.847 289.507 691.669 183.389 126.828 0.0099765

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

156

Figure 2: Computational Time visualization of different sorting algorithms in seconds on random input

data

Figure 3: Computational Time Visualization on Reverse Data to analyze Worst Case

 Based on the analysis of results, mentioned in Table 1, 2 and Figure 3, 4 it could be said that, the proposed

Min Max Merge Sort shows superior performance with random data inputs and achieves better

computational time than all other algorithms especially when working with large datasets such as 500k

elements which finished execution in 89.89 seconds while Bubble Sort required 851.91 seconds. The

performance of Min Max Merge Sort remains stable with worst-case input data because it demonstrates

limited runtime slowness while outperforming all other techniques (for example, achieving 0.0099 seconds

for 500k elements as opposed to 538.84 seconds for Bubble Sort).

7. Conclusion

 Sorting is significant branch of algorithms. Researchers are continuously working on developing efficient

0
100
200
300
400
500
600
700
800
900

T
im

e
 i

n
 S

e
co

n
d

s

Input Numbers

Random Numbers Analysis

Insertion

Bubble

Selection

MinFinder

MMBPSS

2mm

min max merge

0

100

200

300

400

500

600

700

800

T
im

e
 i

n
 S

e
co

n
d

s

Input Numbers

Reverse Data Analysis

Insertion

Bubble

Selection

MinFinder

MMBPSS

2mm

min max merge

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

157

sorting methods and improving available functions due to phenomenal increase of data. This research

presents new sorting method with preprocessing technique. It uses merge technique for sorting like merge

sort. The huge difference is that where merge sort uses extra array for combining two groups of pieces, min

max merge combines the two groups into one group in same memory space and this was the biggest

challenge in this study. The proposed algorithm can be used for various types of data as it also uses

preprocessing before applying original algorithm which helps in making data suitable for algorithm.

Extensive analysis proves that proposed sorting method with preprocessing technique is significantly better

than other comparison-based sorting methods. The authors aim to develop algorithm parallelized version

in future.

Ethical Approval: The purpose of this research is to develop a computational model, rendering it

unnecessary to involve human or animal subjects.

Funding Statement: This research has not received funding from any external source.

Conflicts of Interest: Author of this study declare no conflicts of interest.

Data Availability: In addition to the raw data, program code and supplementary materials, we have

provided detailed documentation outlining the methodology, data collection procedures, and analysis

techniques employed in this study.

References

[1] F. Idrizi, A. Rustemi, and F. Dalipi, “A new modified sorting algorithm: a comparison with state of the art,” in

2017 6th Mediterranean Conference on Embedded Computing (MECO), 2017, pp. 1–6.

[2] V. Jugé, “Adaptive Shivers sort: an alternative sorting algorithm,” arXiv Prepr. arXiv1809.08411, 2018.

[3] O. O. Moses, “Improving the performance of bubble sort using a modified diminishing increment sorting,” Sci.

Res. Essay, vol. 4, no. 8, pp. 740–744, 2009.

[4] S. S. Moghaddam and K. S. Moghaddam, “On the performance of mean-based sort for large data sets,” IEEE

Access, vol. 9, pp. 37418–37430, 2021.

[5] M. Shabaz and A. Kumar, “SA sorting: a novel sorting technique for large-scale data,” J. Comput. Networks

Commun., vol. 2019, no. 1, p. 3027578, 2019.

[6] W. H. Ford, Data Structures with C++ Using STL, 2/e. Pearson Education India, 2002.

[7] H. Rohil and M. sha, “Run Time Bubble Sort – An Enhancement of Bubble Sort,” Int. J. Comput. Trends

Technol., vol. 14, pp. 36–38, 2014, doi: 10.14445/22312803/IJCTT-V14P109.

[8] R. Shah, R. Gadia, and A. Joshi, “A Novel Approach to Sorting Algorithm,” in Research Advances in Network

Technologies, CRC Press, 2023, pp. 179–190.

[9] P. Olukanmi, P. Popoola, and M. Olusanya, “Centroid Sort: a clustering-based technique for accelerating sorting

algorithms,” in 2020 2nd International Multidisciplinary Information Technology and Engineering Conference

(IMITEC), 2020, pp. 1–5.

[10] H. R. Singh and M. Sarmah, “Comparing rapid sort with some existing sorting algorithms,” in Proceedings of

Fourth International Conference on Soft Computing for Problem Solving: SocProS 2014, Volume 1, 2015, pp.

609–618.

[11] M. H. I. Bijoy, M. R. Hasan, and M. Rabbani, “RBS: a new comparative and better solution of sorting

algorithm for array,” in 2020 11th International Conference on Computing, Communication and Networking

Technologies (ICCCNT), 2020, pp. 1–5.

[12] P. Kumar, A. Gangal, S. Kumari, and S. Tiwari, “Recombinant sort: N-dimensional cartesian spaced algorithm

designed from synergetic combination of hashing, bucket, counting and radix sort,” arXiv Prepr.

arXiv2107.01391, 2021.

MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000041

158

[13] M. Marcellino, D. W. Pratama, S. S. Suntiarko, and K. Margi, “Comparative of advanced sorting algorithms

(quick sort, heap sort, merge sort, intro sort, radix sort) based on time and memory usage,” in 2021 1st

international conference on computer science and artificial intelligence (ICCSAI), 2021, vol. 1, pp. 154–160.

[14] M. S. Rana, M. A. Hossin, S. M. H. Mahmud, H. Jahan, A. K. M. Z. Satter, and T. Bhuiyan, “MinFinder: A

new approach in sorting algorithm,” Procedia Comput. Sci., vol. 154, pp. 130–136, 2019.

[15] A. Prasad, M. Rezaalipour, M. Dehyadegari, and M. Nazm Bojnordi, “Memristive Data Ranking,” 2021, pp.

440–452, doi: 10.1109/HPCA51647.2021.00045.

[16] A. B. G. Santos, M. F. Ballera, M. V Abante, N. P. Balba, C. B. Rebong, and B. G. Dadiz, “Asymptotic

analysis of the running time performed by various sorting algorithms,” in 2021 International Conference on

Intelligent Technologies (CONIT), 2021, pp. 1–6.

[17] M. Khairullah, “Enhancing worst sorting algorithms,” Int. J. Adv. Sci. Technol., vol. 56, pp. 13–26, 2013.

[18] W. Min, “Analysis on bubble sort algorithm optimization,” in 2010 International forum on information

technology and applications, 2010, vol. 1, pp. 208–211.

[19] K. Thabit and A. A. BAWAZIR, “Novel approach of selection sort algorithm with parallel computing and

dynamic programing concepts,” J. King Abdulaziz Univ. Comput. Inf. Technol. Sci., vol. 2, pp. 27–44, 2013.

[20] A. S. Mohammed, \cSahin Emrah Amrahov, and F. V Çelebi, “Bidirectional Conditional Insertion Sort

algorithm; An efficient progress on the classical insertion sort,” Futur. Gener. Comput. Syst., vol. 71, pp. 102–

112, 2017.

[21] N. Faujdar and S. P. Ghrera, “Analysis and testing of sorting algorithms on a standard dataset,” in 2015 Fifth

International Conference on Communication Systems and Network Technologies, 2015, pp. 962–967.

[22] A. Mubarak, S. Iqbal, T. Naeem, and S. Hussain, “2 mm: A new technique for sorting data,” Theor. Comput.

Sci., vol. 910, pp. 68–90, 2022.

[23] S. M. Cheema, N. Sarwar, and F. Yousaf, “Contrastive analysis of bubble \& merge sort proposing hybrid

approach,” in 2016 Sixth International Conference on Innovative Computing Technology (INTECH), 2016, pp.

371–375.

[24] A. Shatnawi, Y. AlZahouri, M. A. Shehab, Y. Jararweh, and M. Al-Ayyoub, “Toward a new approach for

sorting extremely large data files in the big data era,” Cluster Comput., vol. 22, pp. 819–828, 2019.

[25] P. Prajapati, N. Bhatt, and N. Bhatt, “Performance comparison of different sorting algorithms,” vol. VI, no. Vi,

pp. 39–41, 2017.

[26] D. E. Knuth, The art of computer programming, vol. 3. Pearson Education, 1997.

[27] S. K. Gupta, D. P. Singh, and J. Choudhary, “New GPU Sorting Algorithm Using Sorted Matrix,” Procedia

Comput. Sci., vol. 218, pp. 1682–1691, 2023.

[28] T. Do, G. Graefe, and J. Naughton, “Efficient sorting, duplicate removal, grouping, and aggregation,” ACM

Trans. Database Syst., vol. 47, no. 4, pp. 1–35, 2023.

[29] S. Abdel-Hafeez and A. Gordon-Ross, “An Efficient O ($ N $) Comparison-Free Sorting Algorithm,” IEEE

Trans. Very Large Scale Integr. Syst., vol. 25, no. 6, pp. 1930–1942, 2017.

[30] A. Agarwal et al., “A new approach to sorting: min-max sorting algorithm,” SORT, vol. 2, no. 2, p. n2, 2013.

[31] A. Mubarak, S. Iqbal, Q. Rasool, N. Asghar, N. Faujdar, and A. Rauf, “Preprocessing: A method for reducing

time complexity,” J. Comput. \& Biomed. Informatics, vol. 4, no. 01, pp. 104–117, 2022.

[32] K. Iwama and J. Teruyama, “Improved average complexity for comparison-based sorting,” Theor. Comput.

Sci., vol. 807, pp. 201–219, 2020.

