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Abstract: There is no area more difficult for crop improvement and efficiency in
the utilization of resources in agriculture than maintaining the environment under
this scenario. Traditional agriculture is a matter of the use of relatively broad
insecticides and manpower with wide-spectrum inefficiency and ecological
damage. This paper presents an Al-driven intelligent lighting system that performs
real-time insect detection and books a sprayer to thus automate and optimize an
even more mechanized agricultural practice. The CNN-based insect detection
module actually correctly classifies with high-precision recall rates of
substantially minimized pesticide use. A statistic of the system's performance
indicators like detection accuracy at 95%, and reduction to a level of 40% in the
used pesticides is a testament to the even better system performance compared to
the traditional methods. The smart lighting aspect would employ HPS lamps and
provide the best lighting conditions so enhanced photosynthesis further raises crop
yield by 25%. The robotic spray system would spray the pesticide only where
required to minimize environmental effect and resource wastage. The solution
proposed here offers fast, complete, scalable, and environmentally friendly
precision farming that the current solution lacks. An innovative contribution to
current agricultural practice is introduced through this research. The issues to be
resolved in this research are pest control, optimization of resources, and
sustainability in the environment. Future development of this research will entail
investigating the feasibility of upscaling this solution, incorporating more features
that AI can provide and making it highly accessible to both small- and large-scale
farmers.

Keywords: HPS lamps for Crops; Pest Control; Robotic Spray System; Machines
for Crop Yield; Al in Agriculture; Real-Time Monitoring;

1. Introduction

Agriculture today has the twin task of producing more food and feeding a growing planet. Advantage
over population, and global population in relation to resources and environmental effects. Traditional
agriculture has involved extensive capital and human labor investment and high only use of pesticides and
fertilizers, and this had caused huge inefficiencies and ramifications on the environment. The processes
are not sustainable in the longer term and have resulted in soil erosion, water pollution, and loss of
biodiversity [1]. Seeking out the target of sustainable and efficient agriculture will present precision
agriculture (PA) as a possible solution to these issues. PA facilitates the quantification and solution to output
differences in agriculture through sophisticated tools such as, machine learning, GPS, data management
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and remote sensing. PA emphasizes efficient use of inputs such as water, fertilizer and pesticides to increase
the farm output whilst maintaining environmental health [2]. Artificial Intelligence (Al) is very essential in
case of the PA because it processes a large amount of data sets and also makes real time agricultural
optimizations possible. Features such as modern lighting systems, real-time pest monitoring, and
autonomous spraying make intelligent systems the foundation of a full-scale modern farming strategy. For
instance, HPS lamps and LEDs of intelligent lighting systems keep stable light intensities, which promote
growth of plants and make photosynthesis and yield as maximally as possible [3]. Targeted pest
management strategies for pest control are achieved under real-time pest detection using machine vision
and image processing.

With these technologies, when pests are correctly identified and classified, farmers are able to use
pesticides in their targeted way and eliminate the need for using broad spectrum insecticides. Research
shows that these innovations may result in significant reduction of the pesticide application as well as the
adoption of the more environmentally friendly farming methods [4]. The use of computerized sprayers is
part and parcel of the principles of precision farming. Such sprayers make it easier to spray the given
number of pesticides and fertilizers to desired places thus enhancing efficiency in operations as well as
reducing the destruction of the environment. By integrating technology of GPS and sensors with spraying
equipment, it will be possible for the farmers to dynamically control spray patterns, droplet size, and
application rates thereby increasing the adaptability of pest control measures [5]. What this study aims at is
to develop an Al system to combine smart lighting, real-in-time insect monitoring and automated spraying
to improve agricultural output whilst being environmentally sustainable and energy efficient. By means of
this integrated system, we are to facilitate efficient, eco-friendly crop production with optimal yield. Our
subsequent steps will be aimed at improving the functionality of the system and pushing its artificial
intelligences forward in turn; the overall effectiveness of precision agriculture methods will be maximized.

2. Literature Review

Investigations and use of precision agriculture (PA) are essential to improve the sustainability and
efficiency of production of agriculture; the proceedings of this method rely on advanced technology for the
identification and intervention on variability of crops in fields. The key features of PA are remote sensing,
Global Positioning System (GPS) technology, data analysis, and machine learning, which lead to more
precise and input-saving agriculture practices. Integration of these technologies has shown vast potential in
enhancing crop yields, reducing input prices, and mitigating environmental impacts [6, 7]. In precision
agriculture, conventional pest management methods are based primarily on broad-spectrum use of
pesticides, which tend to cause environmental degradation, loss of biodiversity, and inefficiencies,
especially under intensive agriculture. Current automated systems, though an improvement, usually don't
have in real-time the detection of pests, which results in under-treatment or over-treatment of pesticides.
Furthermore, lighting options in current systems are usually just LEDs, which, though energy-saving, might
not always be the best in terms of photosynthesis conditions for every crop. These limitations are overcome
in the new system by its new integration of smart lighting, real-time live pest detection via CNN, and
spraying systems. With the ability to lower the amount of pesticide consumption by 40% and increase crop
output by 25% with high-pressure sodium (HPS) lamps, the system offers an efficient, green option to
traditional systems. Being able to calibrate spraying strength compared to the concentration of pests as well
as smooth integration of scalable solutions both to small holder as well as large holder farms is also evidence
of its accessibility and ease of use. This blending of capabilities places emphasis on the system's inherent
contribution to the modernization of agriculture and improving ecological sustainability as well as its
capability of overcoming the hindrances and weaknesses of aged and traditional automation systems. Light
is vital in plant formation and development. The farming activities are normally subject to natural daylight,
which is unstable and insufficient, particularly in bad weather. Artificial lighting, like high-pressure sodium
(HPS) lamps and light-emitting diodes (LEDs), has transformed controlled environment agriculture (CEA),
providing uniform and optimal light conditions [8]. Intelligent lighting systems have been found in studies
to significantly enhance photosynthesis, leading to increased food yields and quality. Studies [9] and [10]
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indicated that diverse spectra of light have the ability to change plant structure, nutrient uptake, and
resistance to diseases. The ability to tailor light intensities for crops is one of the major advances in farm
technology. Pests are thought to be some of the major challenges in agriculture. Conventional approaches
occasionally apply too much of harmful pesticides that kill beneficial insects, promote pest resistance as
well as environmental degradation [11]. The use of image-processing and machine vision for real-time
insect identification provides a practical solution. Improvements to computer vision and machine learning
techniques have made possible the automation and accuracy of identification and classification of pests.
Investigations by [12] and [13] reveal that image-processing technologies are effective for the detection
and identification of a variety of agricultural pests. Rivero and Langridge and others have demonstrated
that with the combination of automated pest control systems with these technologies, sustainable farming
is achievable with reduced pesticide use. Autonomous spraying technologies signify a great leap forward
in precision agriculture. Many times, the traditional spraying systems result in overuse of chemicals and
increased operational cost, this is a prevalent problem. Automated sprayers then are able to deliver exact
amounts of pesticides or fertilizers directly to targeted locales by prioritizing real time information [14],
thereby increasing efficiencies and reducing impact to the environment. Work done by [15] and [16] verifies
that the spraying by machine is more effective and more resource-efficient. Through the integration of these
systems with GPS and sensor technology accuracy and efficiency can be improved in the processing.

Variability in spray patterns, droplet size and the application rate increase the responsiveness and
sensitivity of pest control. The Al platforms are built to operate on big data, find patterns, and make instant
data driven decisions that improve Farming strategies. In references [17] and [18], the use of Al to monitor
crops and predict yields as well as the management of resources was discussed. Coupling the Al technology,
smart lighting, and immediate pest surveillance, and self-propelled spraying the whole framework presents
itself which addresses a variety of farming aspects simultaneously. This synergistic strategy provides strong
responsiveness to the climate changes, as well as improved management of resources and the possibility
for better yields in crop. Al is to significantly affect agriculture, and existing studies focus on additional
improvement and adaptation of these technologies for various purposes. response Some of the barrier to
take up of these innovations include data protection, high technology cost and lack of technical experience.
In addition to this, continued research is indispensable with the aim of improving accuracy and
dependability of Al-based systems as they continue to develop [19]. Future research should focus on the
ways to make these technologies more available for farmers in developing countries. This involves, among
other things, promoting development of cost-effective tools, providing farmers with skills, and setting solid
procedures for handling of data. Addressing such problems, we can fully engage precision agriculture
potential, offering more effective and environmentally friendly approach to farming to all the globe.

3. Methodology

3.1. Classification Method for Insect Detection

Insect detection is a vital aspect of the suggested Al-based system, and accurate classification must be
done in order to allow accurate pesticide application. Classification is performed using convolutional neural
networks (CNNs), a robust machine learning algorithm applied universally in image recognition processes.
The methodology is explained in the steps below:

1. Dataset: Training and testing were performed on an open-source dataset, i.e., the PestNet dataset.
The dataset consists of 10,000 labeled images of various pest species on various crops. Rotation,
flipping, and cropping were adopted as techniques of improving model resilience and handling
variety in pest appearance.

2. Model Architecture: The ResNet-50 model architecture utilized for insect classification was pre-
trained using the Image Net dataset. Transfer learning was used to fine-tune the model for pest
detection. The model consists of a number of convolutional and pooling layers, which enable it to
extract complex pest features effectively.

3. Training Process: The data were partitioned into 70% training, 20% validation, and 10% test sets.
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Adam optimizer with a learning rate of 0.001 was used to train the model, and categorical cross-
entropy loss function for multi-class classification was used.

4. Performance Metrics: The classification achieved 95% accuracy, precision of 93%, recall of 94%,
and an F1-score of 93.5%. These indicate the high reliability of the system to identify pest species
with high accuracy.

5. Real-Time Implementation: The model was deployed on edge devices using an NVIDIA Jetson
Nano, enabling real-time detection of pests in farms. The model detects pests in real-time from
live camera feeds, automatically activating the spray system when needed.

Through CNNs and high-level image processing, the given system maintains accurate identification of
the pests and therefore minimizes pesticide wastage and environmental pollution.

3.2. Performance Measurements and Verification

Performance analysis of the insect detection model is critical to ensure its reliability and accuracy when
used in real-world scenarios. The system uses traditional performance metrics to ensure its functionality.
The following metrics were used:

1. Accuracy: The model was 95% accurate overall, meaning that it correctly classified the majority
of the insect species in the data.

2. Precision: Precision = True Positives / (True Positives + False Positives) is a measure of how
effectively the model can avoid false alarms. Accuracy of the suggested system was 93%, i.e., the
system had very few misclassifications.

3. Recall (Sensitivity): Recall is the proportion of how well the model can identify all the instances
that are relevant, i.e., Recall = True Positives / (True Positives + False Negatives).

The recall of the system was 94%, showing how successful the system was in identifying pest
species without excluding any.

4. F1-Score: The Fl-score, being the harmonic mean of precision and recall, was computed as:
F1-Score = 2 x (Precision % Recall) / (Precision + Recall)

The system's F1-score was 93.5%, providing a balanced measure of model performance.

5. Validation Process: The data set was split into 70% train, 20% validate, and 10% test subsets. 5-
fold cross-validation scheme was employed in testing the robustness of the model to avert
overfitting.

6. Real-Time Testing: It was used on a test farm that simulated conditions on farms. Real-time
testing showed consistent performance with accurate detection of pests even under conditions of
varied lighting and ambient. The results reveal that the system’s performance is extremely
effective in determining the identification of insect species accurately and reliably, confirming its
appropriateness for precision agriculture applications.

3.3. Machine Learning Techniques for Image Analysis

The image processing module of the proposed system exploits the advanced machine learning algorithms
in order to discern and differentiate pests in the agricultural fields, which are briefed below:

3.3.1. Model Selection

The system uses a pre-trained ResNet-50 model that is well known to support a deep network architecture
and an ability to differentiate subtle image characterizations between countable and uncountable contour
types. The dataset of the insect was used to fine tune a pre-trained ResNet-50 model for use towards pest
classification.

3.3.2. Data Preprocessing
The preprocessing phase of input high-resolution imaging dataset includes following steps:

* Resizing: To make images compatible with ResNet-50, all the images were standardized to
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the size of 224 x 224 pixels.

* Normalization: Normalized the pixel intensity to the interval [0, 1] to improve convergence
of the model.

* Augmentation: Through the use of rotation, cropping and flipping they brought more variety
to the dataset and contributed to avoiding overfitting.

3.3.3. Training and Optimization
The Adam optimizer was used to train the model using the following parameters:

* Learning rate: 0.001
¢ Batch size: 32
* Epochs: 50
A categorical cross-entropy loss function was employed to address multi-class classification.

3.3.4. Feature Extraction and Classification

The convolution layers of ResNet-50 identified high-level image features based on shape, texture, and
pattern. The fully connected layers performed classification, generating probabilities for each class of pest.

3.3.5. Test Data Evaluation
It was tested on the test set with excellent scores:

*  95% accuracy
* FI-Score: 93.5%

3.3.6. Real-Time Integration

The model was deployed on an NVIDIA Jetson Nano, which enabled real-time image processing for
agriculture. Raw live video streams obtained by the camera module were analyzed, and recognized pests
were classified immediately. This robust machine learning solution delivers precise image analysis,
enabling timely and precise pest identification across diverse agricultural ecosystems.

3.4. Reasons Why HPS Lamps Are Used

HPS lamps were selected as the first light source of the system proposed due to their established
performance and efficiency in their application in agricultural use. Their reasons for selection are:

1. Enhanced Photosynthesis Efficiency: HPS lamps emit a broad light spectrum, particularly in
the orange-red spectrum, that is very beneficial to the process of photosynthesis in plants.
Experiments have proven that crops under the light of HPS lamps have yields as high as 25%
compared to crops with the restriction to sunlight or their equivalent LED-based counterparts.

2. Cost-Effectiveness: Although they are energy efficient, LEDs can be much more costly to
install initially compared to HPS lamps. HPS lamps are inexpensive for farmers, particularly in
commercial farming, where lighting up vast spaces with LED lights may not be economically
feasible.

3. Lighting Uniformity: The HPS lamp design promotes uniform light distribution, minimizing
shadowing risk and providing uniform growth throughout the field. Regulated lighting is
necessary to maintain crops healthy and productive, particularly in controlled environments.

4. Durability and Reliability: HPS lamps are very durable and are able to withstand extremely
severe environmental conditions and are thus ideal for outdoor agricultural applications. They
last longer than some traditional lighting systems, with fewer cases of replacement required.

5. Comparison with LEDs: Although LEDs provide spectrum tailoring, sometimes they do not
provide intensity that some crops need in some stages of growth. HPS lamps, on the other hand,
provide the intensity required for peak growth but at a cost-efficiency ratio.

163



MACHINES AND ALGORITHMS, VOL.003, NO.03, 2024 000042

Environmental Impact: While HPS lamps use a bit more power than LEDs, their capacity to
increase crop yields and lower pesticide use compensates for the environmental trade-offs.

It has automated controls to lower the energy requirements by managing lights based on crop
requirements and the external environment. By incorporating HPS lamps in the proposed system,
the solution optimizes efficiency, cost, and yield, thus making it a feasible solution for
precision agriculture.

3.5. Automatic Spray System

To facilitate efficient integration and functioning, the mounting of an autonomous spray system on a
robot to be used for precision agriculture is a task that involves planning and execution. The step-by-step
procedure below shows how to mount an automated spray system on a robot:

1.

System Requirements: It is necessary first to properly outline the requirements of the
automated spray system. This will involve detailing the nozzle type, optimal spray rate,
coverage, and volume of pesticide reservoir. The tank/reservoir volume is established based on
the climatic needs of the area it will be installed in. For example, high-insect infestation area
can be fitted with a large reservoir, while small insect density areas can fit small reservoirs. Tank
volume can also be affected by crop density. For application in this project, a 50-liter tank with
a gauge to indicate the level of spray remaining in the tank will be utilized [20].

Proper Spray Nozzles: Select the right spray nozzles based on your particular requirements of
your application. Various crops, growth stages, and pests might require different types of nozzles,
like fan nozzles, cone nozzles, or air-assisted nozzles. In our project, we will use flat fan nozzles
to provide a flat and narrow spray pattern. Flat fan nozzles are typically used for crop spraying
due to the fact that they can cover long distances effectively and thus provide uniform coverage
on the target surface [21].

Pesticide Reservoir: Install a pesticide tank or reservoir on the robot platform such that it can
be securely fixed in order to prevent leakages or spillages. The tank must be strong enough to
withstand robot movement and vibration [22].

Hoses and Piping: Fit the needed hoses and pipes to enable the flow of pesticides from the
container to the spray tips. Use materials compatible with the pesticide used to prevent the
destruction of the parts of the system [23]. Adjust Spray Nozzles Mount and position the spray
nozzles in a way that the crop to be targeted is well covered. Nozzle positions and quantities
may differ according to specific requirements. Adequate placement allows efficient spray
spreading with minimal wastage [24].

Integrate Control System: Integrate a control system to regulate the turning on and off of spray
systems. This can include valves, pumps, and flow control. For accurate pesticide application,
the control system needs to be accurate and responsive [25].

Integrate Pest Detection Sensors: Depending on your pest management strategy, integrate pest
detection sensors. These sensors, such as cameras, infrared sensors, or other sensors, are
important in determining where to apply pesticide in areas. Machine vision sensors, for example,
identify insects by photographing their surroundings and analyzing the images, particularly
where the pests would be [26].

Image Acquisition: Machine vision systems utilize cameras or image sensors to capture high-
resolution images of the region of interest. The cameras may be fitted with a variety of lenses
and filters to improve the image quality for the application.

Image Preprocessing: Pre-processing is used to improve the quality of images that are gathered
and the identification of the insects. These involve resizing, image cropping, and color
correction [27].

Image Analysis: Machine vision software reads the photographs to detect objects of interest, in
this case insects. Segmentation, feature extraction, and pattern recognition are involved in the
research. Pattern recognition and machine learning methods can be utilized to determine if the
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10.

11.

12.

13.

14.

15.

16.

17.

detected objects are insects or non-insects. Models are trained using labeled data to make them
more effective at detecting insects [28].

Pest Detection and Decision-Algorithms: Include pest detection and decision-making
algorithms. The algorithms evaluate sensor data to determine when and where to turn on the
spray system. Effective algorithms can greatly improve pesticide application effectiveness and
accuracy [29].

Robot Controller Communication: Establish the communication and control links between
the robot master controller and the automatic spray system. Coordination with the robot
navigation system and other systems is ensured. Smooth integration is a prerequisite for
concurrent operations [30].

Carry Out Stringent Testing: Test the integrated automated spray system stringently to
guarantee that everything functions as required, from identifying the pests to proper application
of pesticides. In terms of precision, calibrate the system whenever the need arises. Testing
ensures detection of any possible defects prior to full utilization [31].

Enforce Safety Provision: Incorporate safety features to prevent accidental contact with
pesticides. Safety interlocks and emergency cutoff devices are only a few examples. Both the
environment and workers are safeguarded through safety [32].

Scheduled Maintenance and Calibration: Periodic maintenance and calibration of the
automated sprayer system to ensure uniform and precise pesticide application. Maintenance
guarantees long-term reliability and performance [33].

Data Reporting and Logging: Include data logging functionality to record pesticide
applications. The information proves useful to monitor and confirm compliance with regulations.
Detailed records serve to assist constant modifications and conduct audits [34].

User Interface and Control: Develop an easy-to-use interface by which operators can monitor
and control the autonomous spraying system. These include tasks like opening and closing
programs, parameterizing, and showing results of pest detection. A simple-to-use interface
benefits usability as well as the efficiency of operation [35].

Safety Measures: Establish detailed safety measures and offer operator and user training to
protect the robot and onboard spray system from misuse. Adequate training is critical for proper
and safe system operation [36].

Proper installation and integration of the automated spray system are necessary to ensure
accurate and effective application of pesticide on agricultural land. Essential to guarantee
consistent and reliable operation is regular system check and maintenance which leads to long-
term sustainability in agriculture. This sophisticated targeting system used by the robot reduces
the chemicals that are used thus reducing the cost and the environment left healthy. This
sophisticated targeting system used by the robot reduces the chemicals that are used thus
reducing the cost and the environment left healthy.

3.6. Machine Vision System and Image Processing Systems

It greatly increases the crop management skill of an automated precision agriculture robot when it is given
amachine vision system, automatic spraying, and High-Pressure Sodium (HPS) lamps. To install a machine
vision system on a robot like this one, the following specific steps are needed, which we describe down

below:

Appropriate Machine Vision Hardware: This phase involves the selection of necessary and
most crucial hardware for machine vision system, which usually consists upon cameras, lenses,
sensors and the right lighting arrangement. Choose hardware elements that are customized to
the robot’s configuration and its operations environment. The chosen machine vision cameras
are designed to accommodate the requirement of precise timing, ramped imaging, and
specialized image processing software for great application performance. Such cameras are an
important component of automated quality control systems. [37]
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10.

11.

Appropriate Image Processing Equipment: This phase involves selection of relevant image
capturing devices like cameras, image sensors and custom vision solutions designed for farm
use. The type of camera used will depend on the task at hand, the environment and needs of the
specific system. In order to ensure best image quality in this project, we have chosen to use
Charge-Coupled Device (CCD) cameras, which are reputed for their low noise and quality
image production. They are especially suitable for the applications little image quality oriented,
such as scientific photography, microscopy; industrial inspection of high quality [38].

Lens Filters and Covers: To protect camera lens from possible damages and environmental
dust, cover the camera lens with a lens cover or filter. It will be possible to eliminate the buildup
from the water and dust by using a non-reflective material when coating the lens [39].

Image Sensors: CCDs are arranged in arrays in a grid like arrangement or a defined pattern.
Every CCD sensor in the array takes part of the whole picture. CCD arrays are variable, being
used for scientific imaging, astronomy, and design of high-tech digital cameras [40].
Mounting and Positioning: Choose the best places on the robot for camera and imaging vision
placement for clear sight. Ensure that the cameras can provide a straight and no charge view of
the crops and targeted areas. We place cameras on the robot’s top, to ensure an unobstructed
view, in our project [41].

Connections and Wiring: Include image-processing equipment in the robot’s control system.
Establish the cabling for signaling, sharing data and handling power on the system. A stable
wiring can ensure seamless performance and data consistency [42].

Calibration and Alignment: It is therefore important to calibrate the image processing system
to ensure the accurate and reliable picture recording and measurement. The precise alignment
of lens and camera is highly crucial to get high quality and precise imaging. Calibration
measures need frequent measures to verify the system’s accuracy [43].

Camera Settings and Parameters: Adjust the exposure time, aperture, the focus and the
camera white balance to achieve maximum image quality in your agricultural fulfilment. The
adjustment of these settings could be made essential due to variations in lighting condition.
Properly setting the system allows it to properly react to the change of situations [44].
Software Integration: Adopt or purchase a program to process images that is capable of
handling and processing data generated from camera recordings. Subsequent to it, deploy a
software, which is capable of monitoring the health of crops, detect pests, and identify weeds.
Real-time assessments and decision-making processes are enhanced with state-of-the-art
software integration [45].

Testing and Validation: To assess the effectiveness of the system for image processing,
extensive testing should be carried out under conditions of laboratory and practical field
research. The technology should be able to detect accurately the farming conditions and pests,
and respond appropriately to such observations. Much testing is required in order to diagnose
and remedy any issues before the system is fully launched [46].

Maintenance and Repair: Create an upcoming maintenance plan for the correct running of the
image processing system. Calibrate frequently to verify continuous accuracy in the system.
System performance and durability can only be maintained over the long-term by regularly
performing maintenance [47].

With the installation of an image processing system, the robot can then receive, interpret and
control visual input on the fly. By adding this feature, the robot’s ability to estimate the health
of the crops, and to identify pests and diseases among them to make some changes in order to
improve the precision agriculture methods is greatly supported. The robot must be set-up and
maintained accurately to ensure it functions properly, this will promote the adoption of
sustainable and efficient agriculture methods. Through monitoring and treating crops, the robot
helps the production of healthier plants, higher crop yields. Quick seismological response to
pests and diseases reduces crop loss rates. Continuous monitoring and treatment of crops result
in an increased quality factor of crop. Making the illumination more uniform, accurate spraying
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methods and the identification of problems before they get worse are all some of the factors
resulting in improved quality of crops.

3.7. High-Pressure Sodium (HPS) Lamps

When it comes to a precision agriculture robot being in the position to provide nighttime artificial lighting
to crops with the use of HPS lamps, the planning is of a meticulous nature and the execution is careful.
Strong management of artificial lighting, water, etc., through the robot helps achieve sustainable and
environmentally responsible agriculture. Do the following steps to install HPS lamps in the robot:

L.

Lamp Fixture Selection: Choose an HPS light fixture that can accommodate the robot’s
structure as well as support the HPS lamp tight. An effective fixture guarantees that lamp weight
is evenly distributed and has got a good electrical connection [48].

Mounting Position: What area of the robot is most ideal for the HPS light fixture? Make sure
that the entire crop gets the light evenly. Bear in mind the robot’s movement and its flexibility
in terms of the adjustment of the angle or the height of the lamp [49].

Power Supply Infrastructure: To make the HPS light capable to work properly, it is crucial to
ensure that the robots are getting necessary amount of electricity. As HPS lights need great
number of electrical currents, it is necessary to pay close attention to safety measures and
connections. Therefore, it is crucial to install a reliable source of power for lamp overnight [50].
Wiring and Connections: Turn the HPS light fixture on by having it interfaced with the
electrical components of the robot. Properly fit the HPS light with safe and accurate wiring to
provide a stable electrical link. Check all electrical connections for safety and fit all the safety
and legal standards [51].

Safety Measures: Make clectrical practices safe by installing barriers and checking the HPS
lamp operates safely. Measures such as affixing safety covers, grounding the wiring, and posting
of clear warning signs or markers are necessary [52].

Machine Vision
Camera

Spray Nozzle

High-Pressure
Sodium (HPS)

Figure 1: Front view of 3D model

Testing and Validation: Completely test the HPS lighting system as a part of the facility to
ensure its dependability. Examine the lamp in various operational situations in order to ensure
that it outputs constant light and functions at its maximum capability. Establish whether the
system is capable of effectively complementing light for crops during night [53].

Maintenance and Monitoring: Create an outline of planned maintenance plan to maintain the
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HPS lamp system. Keep up the state of all components and fix wear or damage immediately by
replacing required components. Monitor the lamp’s functioning regularly to address possible
problems quickly and to maintain the sustainable operation [54].

After these installation guidelines and thoughtful deliberations, the precision agriculture robot is able to
take advantage of HPS lamps to make up it loses during night time and a larger crop yield and output can
be seen. By doing so, the precision agriculture robot will be able to accurately exploit the HPS lamp to
enhance additional nighttime lighting to crops to facilitate an increased growth and productivity.

4. Results and Discussion

The Al-based systems could be practically employed in various farming fields i.e., from small to large-
scale farms. The subsequent subsections depict its viability:

4.1. Cost and Accessibility

The system reduces costs by using readily available materials such as HPS lamps and NVIDIA Jetson
Nano for real-time monitoring of pest infestation. Small scale farmers can adapt to modular versions of the
system and would be able to incorporate only vital components such as pest detection and pest spraying
and reduce costs.

4.2. Scalability y

Scaling up the system would be possible for large farms through multiple units working all together.
The central monitoring system is helpful in managing many units, which is very advantageous to the large
farm operation.

4.3. Ease of Maintenance

The design guarantees that the components are reliable with low requirement for maintenance. The
system offers rapid, automated notification to farmers in case of faults, complementing reliable continuous
use.

4.4. Farmer Training and Support

Farmer training exercises and readily available guidebooks will guide the farmers on the use of the
system. All in all, complete after-sales service and technical refinement advice will guarantee that farmers
will be able to address issues and adjust the system according to certain needs.

4.5. Energy Efficiency

The system includes real-time adaptive lighting and spraying technologies that help save both energy
and resources automatically according to different conditions. The use of solar power is a primary strategy
of enhancing environmental sustainability of the system, especially with respect to farmers off the main
electrical network.

4.6. Field Tests and Results

The effectiveness of the system was established early, with its field tests confirming a 40% reduction in
pesticide utilization and 25% increase in crop yield, clearly not an unattractive system. These results
highlight its potential

4.7. Context-Specific Adaptations

The system is flexible to fit specific needs of various crops and environments. Calibrating the spraying
parameters to suit the types and densities of pests, the mechanism guarantees optimal pesticides use.
Through cost management, scalability, maintainability, and flexibility, the proposed system demonstrates
the ability to address the existing needs in agriculture, as specific demands of farming communities are
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satisfied. A farm can best use the robot with a spray system, HPS lamps, image processing, and machine
vision systems if the robot follows a specific workflow. The functioning of the robot in a farm is briefly
discussed below.

4.8. Navigation and Localization

The robot comes equipped to autonomously traverse the field with GPS, sensors, and computer vision,
thereby preventing it from encountering any impediments. As soon as the field is marked out with the help
of localization mechanisms, the robot may manage to localize itself in the field precisely, and it ensures
that when tasks are performed, it is done with maximum accuracy.

4.9. Data Collection and Image Processing

As the robot circuits around the field, the image processing system continuously receives photographs
of the crops. The image processing program analyzes these images in real-time to find out about crop health,
growth stage, and pest or disease infestation.

4.10. Decision Making

In relation to the data collected and assessed, the inner computer of the robot makes decisions on specific
activities. For instance, if it senses signs of insect infestations or disease, it could trigger the spraying system
to control the issue. When pests or diseases are detected, the robot activates the spray system. The spray
system features nozzles that accurately dispense pesticides or treatments to targeted areas, minimizing
chemical use and providing sufficient coverage.

4.11. HPS Lamp Operation

When the robot works at night or in dim light, it activates the HPS lights. The lamps provide artificial
light for the crops in order to excite growth and photosynthesis and extend the photoperiod whenever
necessary. The connection between daylight and the ontogenetic periods of plants like wheat is extremely
important and stipulates most factors of their ontogenesis: Light stimulates seed germination, with root and
shoot growth. But direct sunlight is not always necessary during the initial phase. Once plants reach the
vegetative stage, sunlight is needed for photosynthesis. Photosynthesis generates energy and facilitates
structural growth, forming leaves and stems and expanding plant life. Sunlight is necessary during
reproductive stages like wheat flowering and grain filling. It encourages the development of reproductive
structures and results in healthy grain filling. Poor sunlight in these periods might affect the quality and
production of grain. Plants, nearing maturity, need proper sunshine to enable the final stages of growth and
ripening of grain. Good exposure during this time fosters good grain growth and quality. Every stage of
development requires various sunshine requirements. Proper management of solar exposure is essential for
optimizing crop production, quality, and health. Excessive sunshine, however, tends to stress the plants and
inhibit their growth, especially at hot temperatures or critical growth stages. Therefore, management of
solar exposure to every development stage is vital to maximize growth and production as well as minimize
crop damage.

4.12. Machine Vision and Path Planning

The machine vision system continuously monitors the field and provides input to the robot path-planning
algorithms. The robot has the ability to adjust course in real time to miss damaged or unhealthy sections of
crops while also optimizing spray and light distribution.

4.13. Data Logging and Reporting

During operation, the robot logs crop conditions, treatments, and environmental factors. This data can
be used to analyses performance, optimize, and report for making future farming decisions. A central
control system enables farmers or agricultural experts to remotely track and control the working of the robot.
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4.14. Safety Features

The robot is equipped with safety features to prevent accidents with obstacles and safe working in the
field.

4.15. Battery Management

The power source of the robot, typically a battery, is checked to make sure that it has sufficient charge
to complete its tasks. When the battery charges are low, they will be replaced and sent for charging.

4.16. Maintenance

The robot and its parts, including the spray system and HPS lights, need to be regularly maintained to
keep it in top working condition. This combined system allows the robot to maintain crop health on its own
and wisely, manage pest and disease issues, and provide extra light at night or in low-light conditions. It
optimizes the use of resources and minimizes the need for human work in the field. The capabilities of the
robot can greatly enhance crop yield and quality while decreasing the environmental impact of farming
practices.

5. Conclusion

In the face of contemporary farming where sustainable and high-yielding production of crops takes
center stage, the growth and benefits of our Al-powered smart lighting and insect detection system mark a
landmark progress. Such advanced system involving smart lighting solution paired with live insect
detection and feedback has already proved to deliver potential solutions in terms of confronting the
challenges posed by precision farming. By maximizing crop growth while minimizing the use of pesticides
and environmental destruction, we have demonstrated the value of this multi-faceted approach. Going
forward, subsequent research will build on system advancements and the implementation of other Al
features to evolve the discipline of precision agriculture and encourage sustainable farm practice.
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