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Abstract: Breast cancer, being one of the most prevalent malignancies, poses a 

formidable threat to human health due to its aggressive nature and elevated 

mortality rates. The pivotal role of early detection in augmenting patient survival 

rates is well-established. Presently, mammography serves as the conventional 

diagnostic approach; however, its cost and exposure to ionizing radiation 

underscore the need for alternative, cost-effective, and less invasive diagnostic 

modalities, such as thermography. In light of this, the goal of the current research 

project is to construct and create a thermal imaging-based breast cancer detection 

model. The first phase entails developing a customized machine learning model 

built on convolutional neural networks (CNNs), which is specifically intended to 

use thermal pictures to detect breast cancer. This model is subsequently fine-tuned 

through extensive training using a diverse dataset comprising thermal images of 

breast abnormalities, aiming to achieve a robust detection mechanism. The 

overarching objective of this study is to facilitate binary classification, 

distinguishing malignant from benign breast cancer cases, with a particular 

emphasis on the potential to enhance diagnostic accuracy, especially when 

confronted with multifarious image attributes. This work employed a wide range 

of image classification methods to identify breast cancer utilizing thermal image 

processing techniques. The comprehensive workflow encompassed cancerous 

image enhancement, precise segmentation, texture-based feature extraction, and 

the subsequent classification of breast cancer within thermal images, culminating 

in a successful endeavor. Concomitant with these intricate challenges, a bespoke 

classifier was devised, capitalizing on machine learning paradigms such as the 2D 

Convolutional Layer (2D CNN) and Support Vector Machine (SVM). The 

proposed model was meticulously trained on a representative dataset, meticulously 

selected from the DMR-IR (Database of Mastology Research). Notably, the 

empirical results yielded a classification rate of 95% for the proposed 2D CNN 

classifier, surpassing the SVM and pre-existing CNN counterparts, which 

registered classification rates of 91% and 71%, respectively. It is crucial to 

emphasize that there are now just a handful of publicly available datasets for 

thermography in the field of cancer diagnosis. 

Keywords: Thermography; Breast Cancer Detection; Thermal Imaging; Machine 

Learning; Convolutional Neural Networks (CNN) 

1. Introduction 

 The advent of the Internet of Things (IoT) has catalyzed significant advancements across various sectors, 

most notably in the realm of healthcare. The IoT revolution has precipitated a paradigm shift in 
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contemporary healthcare practices, amalgamating technological, economic, and social facets into a 

transformative confluence. Within this transformative landscape, the detection of temperature aberrations 

within the human body, a ubiquitous indicator of illness, assumes paramount importance. Infrared 

thermography (IRT), a non-invasive, contactless, and passive alternative to traditional medical 

thermometers, emerges as a pivotal tool for the observation and monitoring of human body temperature. 

Notably, IRT extends its utility beyond mere temperature measurement, enabling remote monitoring of 

body surface heat. Its effectiveness has been established in a variety of fields, including gynecology, 

dermatology, cardiology, maternal physiology, and neuroimaging, for the early detection and diagnosis of 

a variety of medical diseases, including breast cancer, diabetic neuropathy, and cardiovascular illnesses. 

Real-time, high-resolution thermographic images may now be created thanks to technology advancements 

in the form of improved infrared cameras and data processing methods. Simultaneously, IoT, as an 

emerging technological frontier, has empowered professionals, physicians, and researchers to usher in 

revolutionary solutions, particularly within the medical and healthcare domains. IoT leverages smart 

sensors, computer networks, and remote servers, among other elements, to forge innovative pathways in 

healthcare delivery [1]. 

 The overarching objective of this research endeavor is to introduce an IoT-enabled medical system that 

seamlessly facilitates remote diagnosis and detection of various medical anomalies in real-time. The 

Internet of Things (IoT) technology and infrared thermographic methods are combined in this project to 

create a dynamic system that can recognize, diagnose, and wirelessly alert users of problems, thereby 

maximizing the potential of the IoT.  

 Assuming the integration of IoT technology and infrared thermographic methods in our work, our 

research endeavors to revolutionize medical diagnostics. The goal is to provide a wireless, real-time 

solution for remote medical anomaly identification and warning. This cutting-edge device not only 

improves diagnostic skills but also makes use of the Internet of Things to provide prompt and effective 

healthcare solutions. 

 Cancer, a condition in which cells within body tissues proliferate out of control, is extremely dangerous 

to human health. While cancers can arise in various tissues throughout the body, breast tissue stands as a 

particularly abundant site. The human body continually generates and divides cells to support growth and 

vitality, a process that can be disrupted as individuals age. In some instances, these normal cellular turnover 

falters, resulting in the accumulation of surplus, unnecessary cells. This aberrant cellular growth can 

manifest as a lump, tumor, or growth. In the context of breast tissue, such cancerous growths are indicative 

of breast cancer, often accompanied by inflammation. 

 In recent decades, breast cancer has emerged as a leading cause of mortality among women, prompting 

governments worldwide, particularly in developed nations, to channel substantial efforts into its detection 

and treatment. Central to the effective management of breast cancer is the identification of sentinel lymph 

nodes, which possess a direct lymphatic connection to the malignancy and, consequently, represent 

potential sites for cancer metastasis from the breast. Accordingly, numerous research endeavors have been 

dedicated to advancing the field of breast cancer diagnosis and classification [2]. The creation of an adaptive 

system capable of classifying and detecting breast cancer becomes critically important in light of these 

requirements. About 22.9% of all invasive malignancies in women are breast cancer, making it a substantial 

contributor. Multiple diagnostic modalities have been employed in the detection and diagnosis of this 

disease, with mammography holding a prominent position. Mammography, a screening technique designed 

to detect breast cancer at its nascent stages, entails the physical examination of the breasts by medical 

practitioners. Additionally, screening procedures such as thermal imaging, mammography, and other 

imaging techniques have been deployed. Mammography, owing to its simplicity, cost-effectiveness, and 

efficiency, has long been regarded as the gold standard for early-stage breast cancer diagnosis. However, it 

is not without its drawbacks, including radiation exposure and patient discomfort. Importantly, the 

sensitivity of mammography ranges from 70% to 90%, with a false-negative rate of 10% to 30%, potentially 

leading to the overlooking of more than a quarter of all malignancies. This limitation is especially important 
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when dealing with big, ill-defined breasts because it can be difficult to distinguish between malignant and 

healthy tissue in these situations. 

 In summary, the research outlined in this paper aims to address these crucial concerns by presenting a 

comprehensive approach to breast cancer detection that makes use of thermal imaging, IoT technology, and 

advanced machine learning techniques, aiming to enhance the overall efficacy of breast cancer detection 

methodologies and improve diagnostic accuracy, reduce invasiveness, and reduce the burden on patients. 

1.1. Research Objective: 

 The principal objective of this study is to enhance the classification accuracy of a CNN model when 

applied to breast images, differentiating between malignant and non-cancerous situations. This 

methodology encompasses the following steps: 

• Curating a dataset of cancerous and non-cancerous thermal images, sourced from an open-access 

online database. 

• Designing and training a 2D CNN model tailored for binary classification, distinguishing between 

malignant and benign cases, using the curated thermographic images. 

• Implementing strategies to enhance the model's classification accuracy, consequently reducing the 

occurrence of false-positive results. 

2. Literature Review 

 Breast cancer remains a leading cause of global female mortality. Advanced engineering techniques and 

Artificial Intelligence have significantly influenced breast-image classification, with thermal imaging 

offering an alternative perspective and time-saving benefits for specialists. Despite numerous articles on 

breast image classification, comprehensive review papers are scarce. This research emphasizes the CNN 

approach for breast imaging categorization and discusses the use of traditional Neural Networks (NN), 

logic-based classifiers (e.g., Random Forest, Support Vector Machines, Bayesian methods), and some semi-

supervised and unsupervised methods in addition to CNN [20]. 

 Machine learning has greatly improved breast cancer patient care, and this progress has been further 

accelerated by incorporating machine-learning techniques. However, the computational complexity of 

current deep-learning-based machine learning classifiers remains a key challenge. This research aims to 

develop a lighter DNN model that can be constructed more efficiently. Additionally, the reliance on 

extensive training data in DNN-based cancer image classifiers is a concern. This paper provides a 

comprehensive overview of breast cancer image classification, encompassing breast thermogram datasets, 

general image classification methods, feature extraction, noise reduction techniques, performance 

evaluation criteria, and cutting-edge findings. In cases where expert resources are limited, a machine 

learning-based diagnostic system can offer immediate disease feedback, enhancing patient care [3]. 

 Back Propagation Algorithm (BPA), Radial Basis Function Networks (RBFN), Learning Vector 

Quantization (LVQ), and Competitive Learning Network (CL) are neural network models implemented by 

R. R. Janghel et al., with LVQ emerging as the optimal classifier for breast cancer detection [13]. In another 

study, the author introduced a hybrid system for recognizing breast cancer tumors, employing three modules: 

fuzzy feature-based feature extraction, hybrid bees algorithm (BA) - back-propagation (BP) for classifier 

training during the training phase, and a multi-layer perceptron (MLP) neural network as the classifier, 

achieving high accuracy [15]. Additionally, they introduced a partially connected neural network technique, 

demonstrating its comparability to fully connected neural networks across four datasets [14]. 

 The primary technology for breast cancer screening is mammography, but it falls short in detecting 

tumors in thick breasts or those smaller than 2 mm. To address these limitations, thermography-based breast 

cancer detection is proposed. This method involves four stages: (1) Image pre-processing using the top-hat 

transform and adaptive histogram equalization, (2) ROI segmentation through K-means clustering and 

binary masking, (3) feature extraction using signature boundary, and (4) classification employing the 
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Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP). The proposed approach is evaluated 

on the DMR-IR public dataset, considering various experimental scenarios (e.g., integrating geometrical 

and textural feature extraction) and assessing performance metrics like accuracy, sensitivity, and specificity. 

Notably, ELM-based results outperformed MLP-based results [5]. 

  A paper purposed the methodology combining thermography and mammography for breast cancer 

detection is presented. The findings indicate that the thermogram-based detection method exhibited lower 

sensitivity compared to mammographic technique. However, when both techniques were combined 

(thermogram and mammogram detection), sensitivity improved compared to previous results [5]. 

 Block Variance, introduced by Sourav Pramanik et al. in their paper, serves as a feature extraction 

technique. It leverages local texture analysis, applied to diagnose breast cancer using thermograms. Their 

approach combines gradient descent training with a feed-forward neural network during classification. 

Testing was conducted on the DMR public database, utilizing 100 photos, including 40 malignant and 60 

benign cases. Asymmetric analysis validates the proposed method, which exhibits a high classification 

accuracy with a false-positive ratio below 0.1. However, it's essential to note that these successful results 

were obtained with a limited dataset [6]. 

 Gaber et al. proposed an automated segmentation and classification approach for distinguishing normal 

and abnormal breasts. This automated segmentation relies on the Fast Fuzzy C-mean method optimized 

with Neutrosophic submodules. The SVM classifier discerns between normal and aberrant images. The 

approach was assessed for sensitivity and accuracy, but the study's limited sample size of 29 healthy 

individuals and 34 cancer patients restricts the generalizability of the results [7]. 

 In their study, the authors of [8] investigated seven deep convolutional neural network models 

(GoogLeNet, AlexNet, ResNet-50, ResNet-101, Inception-v3, VGG-16, and VGG-19) to classify breast 

thermograms. They employed a learning rate of 1e-4 and allocated 70% of the dataset for training, 30% for 

verification, with a total of 5 epochs. The dataset included 141 thermal images of healthy individuals and 

32 thermal images of breast cancer patients. Evaluation metrics encompassed sensitivity, specificity, area 

under the ROC Curve, and accuracy. Notably, the InceptionV3 model yielded results with specific values 

for specificity while sensitivity and accuracy were not provided. 

 In their paper, the authors proposed a methodology that combines an SVM classifier with a deep CNN, 

Inception V3, to enhance early-stage breast cancer detection. The study utilized the DMR thermal image 

database, consisting of 602 normal and 460 aberrant thermal images. Network training employed a learning 

rate of 1e-4, and the deep convolutional neural network Inception V3 was trained on 80% of the data, with 

20% reserved for validation, over 15 epochs. The findings underscored Inception V3's suitability for 

processing both dense and sparse input, making it a fitting choice for classification tasks [9]. 

 In their study, the authors explored various convolutional neural networks (CNNs) including VGGNet, 

V-net, End-to-end CNN, Input Cascade CNN, and U-net, among others. They conducted examinations on 

a cohort of 180 breast cancer patients at a cancer hospital, constituting their database. Parameter learning 

employed the Adam optimization approach with a learning rate of 10-4 for point-wise classification 

modeling methods and 10-5 for end-to-end CNN segmentation modeling techniques. Notably, V-net 

demonstrated remarkable accuracy among the tested models [10]. 

 This paper leverages deep CNNs, specifically Inception V3, for automatic feature extraction and 

classification purposes. The study also shows how accuracy is impacted by the state of the hardware and 

software. A technique for automatic screening and categorization of thermal images was developed, 

involving multiple learning rate values and iterative training of the Inception V3 software with learning rate 

adjustments. Inception V3, a third-generation model in the Inception series, produced varying accuracy 

results at each training step, and the classification's average accuracy was computed from epochs 3, 5, and 

6. The strategy yielded superior outcomes within the learning rate range of 1e-3 to 2.5e-3, with consistently 

high accuracy levels [11]. 

 The researchers presented four experiments aimed at identifying the optimal convolutional neural 

network (CNN) model. The first experiment involved dataset partitioning, allocating 50% for training, 20% 
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for evaluation, and 30% for testing. CNNs were combined with various optimization algorithms, including 

Adaptive Moment (ADAM), Root Mean Square Prop (RMSPROP), and Stochastic Gradient Descent 

(SGD), with SGD emerging as the most effective. In the second experiment, CNN models were altered by 

swapping out the top layer with either an average pooling layer or a flattening layer. Results indicated that 

basic CNN models with the flattening layer achieved notably high accuracy levels [12]. 

 In their research, a backpropagation neural network was employed to develop a breast cancer detection 

technique. By correcting missing attribute values during the data gathering procedure, they improved 

experimental outcomes. Notably, increasing the number of neurons in the hidden layer correlated with 

improved accuracy. The optimal configuration involved a neural network with 9 neurons in the hidden layer, 

achieving superior accuracy compared to the reference paper [16]. 

 Breast cancer is a potentially lethal and aggressive disorder that is defined by distinct cellular 

abnormalities within the breast. Early detection is pivotal for effective treatment and can mitigate the 

exorbitant healthcare costs associated with breast cancer. Recent years have witnessed the emergence of 

computer-aided techniques as a critical facet of automated cancer detection. This paper presents a system 

for automated breast tumor diagnosis, incorporating an enhanced Deer Hunting Optimization Algorithm 

(DHOA) for optimization. The methodology combines an improved convolutional neural network (CNN) 

with a hybrid feature-based strategy. Simulations are conducted using the DCE-MRI dataset, with 

performance metrics established for evaluation. The research incorporates preprocessing to streamline the 

categorization process and introduces a novel metaheuristic approach. Furthermore, the feature extraction 

method incorporates Haralick texture and local binary pattern (LBP), contributing to the method's precision 

and efficacy, as demonstrated by the obtained findings [17]. 

 This research delves into automated breast cancer diagnosis employing Machine Learning techniques. 

Recursive Feature Elimination (RFE) was employed to select salient features from a CNN classifier model. 

Additionally, the study conducts a comparative analysis of five algorithms, namely SVM, Random Forest, 

KNN, Logistic Regression, and the Naive Bayes classifier. The evaluation utilizes the BreaKHis 400X 

Dataset, with a focus on measuring system performance based on accuracy and precision. Probabilistic 

predictions are combined with activation functions like ReLu. The comparative analysis encompasses 

various machine learning algorithms for breast cancer screening, including CNN, KNN, SVM, Logistic 

Regression, Naive Bayes, and Random Forest. It is evident that CNN outperforms existing methods in terms 

of accuracy, precision, and data scalability [18]. 

 The Convolutional Neural Network (CNN) has an enduring and illustrious history in biomedical image 

analysis. Its origins trace back to Fukushima's introduction of the " necognitron" CNN, which exhibited the 

remarkable capability to detect stimulus patterns with minimal variations [13]. This pioneering work 

emerged from Japan. Notably, Wu et al. are credited as the first researchers to employ a CNN model for 

classifying batches of mammography images into malignant and benign categories. Their approach 

included a simplified model architecture with a single hidden layer, which reduced model complexity while 

obtaining good accuracy. Subsequently, Sahiner et al. harnessed CNNs to distinguish between mass and 

normal breast tissue, demonstrating commendable accuracy in classifying both tissue types [6]. 

3. Experimental Design and Procedures: 

3.1. Dataset Description 

 In this study, we introduce a 2D CNN model for binary breast cancer classification using thermal 

imaging. The popular, unrestricted, and openly accessible DMR-IR database of Visual Lab Group at Federal 

Fluminense University, Brazil is the database's source. Considerations for image capture involve controlled 

room conditions and patient instructions to avoid physiological changes. The FLIR SC-620 thermal camera, 

with a resolution of 640 × 480 and thermal sensitivity of 45 mk, was used for 287 women aged 29 to 85. 

Protocols include dynamic patches of 20 and static images from five angles. Diagnostic confirmation was 

obtained through mammography, ultrasound, and biopsies, with rigorous authentication by radiologists. 

The database can be accessed online at [19] using a user-friendly interface.  
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Figure1: Sample of breast cancer thermograms from DMR database. 

 We have curated image datasets from the DMR-IR dataset and organized them into three distinct sets. 

The first set comprises 100 images, the second set comprises 500 images. In both of these sets, we allocated 

80% of the data for training purposes, reserving the remaining 20% for testing. This training and testing 

schedule lasted 20 epochs. The third set, on the other hand, consists of 4000 images. Similar to the previous 

sets, we utilized 80% of this dataset for training and allocated the remaining 20% for testing, albeit with a 

total of 10 epochs for training and evaluation. 

Table 1: Dataset Description 

Dataset description  Dimensions  Training  Testing  Total  

Batch 1  640 x 480  80%  20%  100  

Batch 2  640 x 480  80%  20%  500  

Batch 3  640 x 480  80%  20%  4000  

3.2. Proposed 2D CNN model architecture 

 A customized 2D CNN model is being developed to better breast cancer diagnosis. The efficacy of the 

Convolutional Neural Network (CNN) method in breast cancer diagnosis is attributed to its ability to extract 

global features through kernel-based operations. These global features have traditionally been leveraged 

for image classification tasks. In this context, a deep CNN model, drawing inspiration from GoogleNet and 

incorporating certain elements from ResNet, is employed for feature extraction and binary classification. 

Specifically, the model utilizes a hidden layering sequence for analyzing benign and malignant tumors. 

Simulation results underscore the superiority of the 2D CNN variant (CNN 2D-h) as the most effective 

classifier. This effectiveness stems from its capacity to intuitively categorize thermograms, achieved 

through filtration and the application of the Rectified Linear Unit (ReLU) activation function, facilitating 

an instinctive classification of thermographic data. The deployment of a 2D-CNN facilitates the efficient 

identification of distinctions between benign and malignant tumors, allowing for the rapid and automatic 

extraction of significant features without the need for preprocessing. 
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Figure 2: The architectural structure of the CNN process 

3.3. Model Architecture 

 Step 1: The initial phase involves loading the dataset and efficiently batching the data for processing. 

 Step 2: Subsequently, the dataset is partitioned into distinct training and validation subsets. 

 Step 3: It is noteworthy that each category of thermal images comprises varying quantities, specifically 

100, 500, or 1000 images. 

 Step 4: The subsequent step involves specifying the training options for the Convolutional Neural 

Network (CNN). 

 Step 5: The CNN is then trained utilizing the designated training dataset. 

 Step 6: Following training, the model is employed for the detection of both positive and negative cases. 

 Step 7: The validation of each image is meticulously carried out, and the accuracy of the model's 

predictions is computed. 
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Figure 3: Proposed 2D CNN Model Layered Architecture 
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3.4. Features of the 2D CNN Model 

 The introduced 2DCNN model has the following fundamental characteristics: 

3.4.1. 1x1 Convolution 2D Layer 

 This layer serves to reduce data size within the network, enhancing both depth and breadth. 1x1 

convolution, also known as the "Network Inside Network," analyzes pixel-wise combinations in an image, 

resulting in a 1x1 output. While it may not learn internal linear patterns, it captures similarities across image 

channels, aiding dimension reduction and enhancing network learning. 

3.4.2. 1x1 Batch Normalization Layer 

 Batch normalization fosters independent learning at each layer and scales input layers. It serves as a 

regularizer to prevent overfitting while promoting effective learning. This layer in the CNN 2D-h model 

uses normalization algorithms to equalize input/output between the convolution layer and the activation 

function (ReLU). 

𝑥 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑚

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

4.3.3. 1x1 ReLU Layer 

 The output of each kernel operation undergoes rectification using the ReLU function, known for its 

effectiveness. It sets values less than or equal to zero to zero, allowing positive values to pass. The ReLU 

parameter can be tuned to optimize model performance. 

σ (x) =  max (0, x) 

3.3.4. Max-Pooling 2D Layer 

 A pooling layer, placed after ReLU, selects the maximum element within filter-covered areas of a feature 

map. This technique condenses notable characteristics from the preceding map, taking just the highest 

values within a kernel size into account. When a 2x2 kernel is applied to the entire image, the result is a 

4x4 output. 

3.3.5. 1x1 Fully Connected Layer 

 Data from preceding layers is consolidated for image classification. The output from the previous max-

pooling layer is flattened before entering the Fully Connected layer. 

3.3.6. Softmax Layer 

 The SoftMax function computes classification probabilities by transforming the output of a fully 

connected layer to a value between 0 and 1. It calculates data classification loss using normalized 

exponential functions. Neurons in the previous layer fully link to the SoftMax layer. 

fj
l = σ (∑ fi

l−1

Nl−l

i=1

∗ ki,j + bj
l) 

 The layer before the Soft-Max Layer is denoted by: 

h𝑝
𝑒𝑛𝑑 = 𝜔𝑒𝑛𝑑 ∗ ℎ𝑝

𝑒𝑛𝑑−1 + 𝑏𝑒𝑛𝑑 

 Given that we are using binary classification, the normalized Soft-Max regression result can be 

represented as: 

ȳ𝑝 =
exp (ℎ𝑝

𝑒𝑛𝑑)

∑ exp (ℎ𝑝
𝑒𝑛𝑑)2

𝑝=1
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3.3.7. Classification Output Layer 

 This final stage leverages SoftMax probabilities to classify inputs into mutually exclusive classes. Post-

training, the network classifies the validation set, achieving a 95% success rate in our 2D CNN model. 

3.3.8 Hidden Layers 

 To establish a deep neural network, hidden layers can be added. Our proposed 2D CNN incorporates 

three hidden layers, with the last layer of one batch connecting to the first layer of the next. 

Table 2: Structural Information of Proposed Methodology 

 

3.9 Performance analysis of 2D CNN: 

 A number of performance measures, including accuracy, specificity, sensitivity, recall, precision, and 

F-score, are calculated as part of performance analysis. The confusion matrix, which includes information 

on the number of true positives, false negatives, false positives, and true negatives (FN), is used to calculate 

these parameters. 

4. Results and Discussion 

Figure 4: Accuracy results with batch 1  
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 Figure 4 shows the accuracy results with 20% dataset that indicate the roughness of graph lines due to 

the short number of images and the maximum number of training samples. As we increase the number of 

images, then the smoothness of the graph increases automatically.  

 

Figure 5: Accuracy results with batch 2  

 Figure 5 shows the accuracy results with batch 2 that indicate the roughness of graph lines due to the 

short number of images and the maximum number of training samples 

 

  

Figure 6: Accuracy results of epoch 5 with batch 3 
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 Figure 6 presents the most favorable accuracy results achieved with a batch3 size of 4000 images at 

epoch 5. This illustration provides a noteworthy indication that the irregularities observed in the graph's 

lines can be attributed to the limited quantity of images and the saturation of training samples, particularly 

at the maximum threshold. It is noteworthy that the introduction of a greater number of images results in a 

concomitant enhancement of the graph's inherent smoothness.  

Figure 7: Accuracy results of epoch 10 with batch 3 

 Figure 7 depicts the most optimal accuracy results achieved with a batch 3 size of 4000 images at epoch 

10. This presentation provides valuable insights, suggesting that the irregularity observed in the graph lines 

can be attributed to the limited number of images and the saturation of training samples. Notably, the 

augmentation of the image dataset leads to an inherent improvement in the graph's smoothness.  

 

Figure 8:  False results of epoch 5 with batch 3 

 Figure 8 illustrates the most favorable outcomes in terms of false results, specifically with a batch3 size 

of 4000 images at epoch 5. This portrayal conveys a critical insight: as the quantity of images within the 

dataset rises, there is a concomitant escalation in the false rate. Furthermore, it is noteworthy that this 

augmentation in the number of images inherently contributes to the heightened smoothness exhibited by 

the graph. 
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Figure 9:  False results of epoch 10 with batch 3  

 Figure 9 presents the optimal false results obtained with a batch 3 size of 4000 images at epoch 10. 

This observation underscores the direct relationship between the size of the dataset and the false rate, 

indicating that an increase in the number of images in the dataset results in a corresponding increase in the 

false rate. Furthermore, it is noteworthy that as the number of images is augmented, there is a natural 

enhancement in the graph's overall smoothness. 

The reliability of the model is severely impacted by the growing false rates with more data. Increased 

false negatives could jeopardize the model's efficacy, while elevated false positives could distort decision-

making. In order to overcome these obstacles, a careful balance must be struck, requiring model tuning, 

data quality assessment, and a sophisticated comprehension of the trade-offs between false positives and 

false negatives in the particular situation. 

Figure 10: F-score results  

 In Figure 10, we depict the F-score measurements for 20 individual epochs. It is observed that the 

Convolutional Neural Network (CNN) exhibits a notable 46% increase in false-negative rates, which 

renders it less effective in terms of F-score. The variability observed in F1 scores throughout models and 

sample sizes could be attributed to differences in model sensitivity, features of the dataset, and the complex 
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interaction of hyperparameters. In order to reduce these swings and improve overall predictive accuracy, 

careful tuning and investigation of model complexities are essential. This phenomenon can be attributed to 

the fact that CNN requires additional processing time when dealing with larger training datasets, ultimately 

impacting the overall image detection time. Similarly, Support Vector Machine (SVM) also demonstrates 

a 33% increase in false-negative rates, indicating its limited effectiveness in achieving a high F-score. In 

contrast, the proposed technique exhibits a more promising and effective performance, delivering improved 

results in this context. 

5. Conclusion:  

 In the domain of cancer detection, various methodologies leveraging extensive datasets have been 

employed to prognosticate the status of query images. Thermal imaging, a crucial modality, significantly 

enhances predictive capabilities in cancer detection systems. This study introduces a novel approach 

utilizing a 2D Convolutional Neural Network (CNN) architecture with three optimized hidden layers, 

demonstrating superior outcomes compared to traditional CNN models. The proposed model exhibits 

enhanced classification efficacy when applied to thermal image datasets. Implemented entirely within the 

Matlab environment, our approach operates on a segmented dataset comprising a substantial volume of 

breast cancer images, encompassing various states and thousands of images. Despite a dataset reduction to 

600 images, our proposed model achieves exceptional results, surpassing comparative techniques. 

Specifically, it attains a remarkable binary classification accuracy rate of 95% and an F-score of 94%. In 

contrast, conventional CNN and Support Vector Machine (SVM) models, discussed in the conclusion but 

not presented in the results, display classification accuracy rates of 71% and 91%, respectively. CNN and 

SVM also exhibit F-scores of 68% and 89%, respectively. Our findings suggest that the combination of our 

methods with other approaches could yield more refined models, elevating the standards for medical picture 

categorization. The crux of this endeavor lies in the meticulous refinement of the layering process, a pivotal 

facet of feature detection. Consequently, further precision and accuracy in layering are imperative. The 

development of an enhanced CNN layering technique, capitalizing on precise intensity value ranking, 

demands increased reliability to continue advancing the frontiers of medical image classification. To 

expedite the review and typesetting process, authors must follow the Microsoft Word template   provided 

for preparing their manuscripts. This template must be strictly adhered to when formatting the manuscript 

for submission. 
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