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Abstract: The human brain, a highly intricate organ, governs the entirety of 

physiological functions. The emergence of brain tumors, characterized by the 

anomalous and unregulated proliferation of brain cells, both within and outside the 

cranial cavity, presents a multifaceted challenge. These tumors manifest diversely 

in terms of their spatial distribution, morphology, and radiological attributes. Brain 

tumor segmentation entails the precise demarcation of pathological tumor tissue 

from normal brain constituents, while classification pertains to the discernment of 

the specific tumor subtype based on its distinctive features. The accuracy of brain 

tumor segmentation holds paramount significance in the realms of diagnosis, 

patient monitoring, and treatment strategizing, particularly for individuals afflicted 

by cerebral malignancies. This computational challenge is extremely complex 

since it lies at the intersection of computer vision and medicine. The most common 

method for evaluating brain malignancies is magnetic resonance imaging (MRI). 

Nonetheless, the manual segmentation and classification of 3D MRI images 

impose an arduous and time-intensive burden, contingent upon operator 

proficiency, leading to variable outcomes. In light of these challenges, the 

imperative arises for the development of a dependable, fully automated method 

for brain tumor segmentation and classification, offering efficiency and 

consistency in delineating tumor subregions. Convolutional Neural Networks 

(CNNs), a representative of deep learning techniques, have surpassed earlier 

machine learning paradigms in this endeavor by completing the challenging 

process of segmenting brain tumors. This paper introduced a deep learning-based 

framework tailored for the segmentation of brain tumors from multi-modal MRI 

scans. This innovative framework draws inspiration from two prominent 

architectural paradigms, namely the U-Net and residual network, further enhanced 

with attention mechanisms. The embedded attention gates facilitate automatic 

focalization on structures of varying dimensions and shapes while suppressing 

irrelevant regions. The method underwent rigorous evaluation on the BRATS 2015 

dataset, comprising 220 High-Grade Glioma (HGG) cases and 54 Low-Grade 

Glioma (LGG) cases. The results exhibited Dice scores of 0.53, 0.73, and 0.61 for 

enhancing tumor, whole tumor, and tumor core segmentation, respectively, on the 

BRATS 2015 test data, affirming the efficacy of that approach. 

Keywords: Brain Tumor Segmentation; MRI image analysis; Deep learning; 

Convolutional Neural Networks (CNN); Medical Image Processing;  
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1. Introduction 

 The human brain is an exceedingly complex organ, comprising approximately 100 billion distinct cell 

types. Within this intricate neural landscape, brain tumors manifest as aberrant masses of irregularly shaped 

brain tissue characterized by uncontrolled cellular proliferation. Damage to nerve cells can result in a variety 

of health issues for people as well as abnormalities in the human body's brain. The brain's tissues are 

negatively impacted by these injured cells. This issue raises the possibility of brain tumors developing in 

people [24]. Brain tumors fall into two distinct categories: primary and metastatic. While metastatic brain 

tumors form in other bodily sections of the human body, such as the breasts or lungs, and then spread to 

other areas of the brain, primary brain tumors originate inside the brain, including nerves, blood arteries, or 

different brain glands [25]. Malignant and benign tumors exist. Malignant brain tumors are malignant and 

grow rapidly within the body. Glioblastoma is the most prevalent malignant brain tumor [26]. The cells in 

benign brain tumors proliferate slowly and are not malignant. This kind of tumor doesn't spread to other 

bodily areas. It won't reappear in the body if surgically removed safely [27]. Approximately 120 different 

subtypes of brain tumors have been found via ongoing studies, highlighting the diversity of these diseased 

entities. The clinical presentation of brain tumors encompasses a spectrum of symptoms, including but not 

limited to headaches, mood fluctuations, memory impairment, seizures, disruptions in sleep patterns, and 

visual disturbances. These manifestations serve as indicative markers of the presence and potential impact 

of a brain tumor on neurological function. 

Here are some figures to help you understand how brain tumors affect people's quality of life: 

• Among the various malignancies, brain tumors are responsible for many deaths worldwide in both 

men and women [1]. 

• Nearly 2% of cancer cases worldwide are caused by brain tumors [2]. 

• Only 33% of people with brain cancer survive five years or more, compared to 90% of people with 

breast cancer and 65% of people with leukemia [3]. 
 Brain tumors exhibit substantial diversity in appearance and shape, often displaying marked 

heterogeneity. They can emerge within the brain or extend beyond its confines, varying in size and 

presenting irregular, indistinct borders that pose challenges for differentiation from normal tissues. 

Magnetic resonance imaging (MRI) has emerged as a pivotal technique for brain tumor analysis, facilitating 

the critical processes of segmentation and classification within volumetric 3D data. Because it serves as the 

first stage in diagnosing, monitoring, and forecasting patient outcomes, this project is a significant one in 

the field of medical image analysis. Machine learning methods have historically been used for the 

segmentation and classification of brain tumors. However, contemporary advancements in deep learning 

have eclipsed conventional methodologies. This study exclusively explores deep learning approaches. The 

annual MICCAI challenge on Brain Tumor Segmentation (BRATS) serves as a standardized platform for 

diverse algorithms to benchmark their performance, and numerous conferences provide avenues for the 

dissemination of novel findings. this context presents a convolutional neural network-based model tailored 

for brain tumor segmentation and classification, leveraging the BRATS dataset. This ground-breaking 

framework takes cues from two well-known architectural paradigms: the U-Net and residual network. By 

incorporating attention gates and residual connections into a streamlined U-Net structure, the model 

autonomously learns to identify tumor structures of varying shapes and sizes while effectively suppressing 

irrelevant regions. The evaluation was conducted on the BRATS 2015 dataset, comprising 220 High-Grade 

Glioma (HGG) cases and 54 Low-Grade Glioma (LGG) cases, affirming the model's efficacy. 

1.1 Problem Statement 

 In the realm of brain tumor segmentation and classification using MRI, numerous challenges abound. 

Brain tumors exhibit substantial variability in appearance and shape among patients, necessitating the 

capture of four distinct MRI modalities for each individual to glean comprehensive insights into these 

conditions. It is typical to use numerous modalities as input during the process of segmenting and 

classifying brain tumors since each modality may provide a clearer definition of certain tumor features. 
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This complex undertaking typically involves various stages, encompassing pre-processing, feature 

extraction, segmentation, classification, and post-processing, culminating in the generation of a segmented 

brain tumor with distinct classes. The utmost importance lies in ensuring the accuracy and reliability of the 

segmented tumor, as it directly impacts the efficacy of disease treatment. 

1.2 Objectives of Research 

 The main objectives of this research are as follows: 

 Application of Deep Learning in the Medical Field: In recent times, artificial neural networks have 

revolutionized the medical domain, being employed in various medical applications such as classification, 

captioning, segmentation, and disease detection. By offering accurate illness analysis and supporting better 

medical decision-making, deep learning plays a crucial role in assisting medical professionals. 

 Literature Review: Another key objective of this research is to conduct an in-depth review of recent 

literature concerning deep learning methodologies in the context of brain tumor analysis. This paper tries 

to assess numerous factors that have a big impact on how well automatic brain tumor segmentation and 

classification work. 

 Practical Application: Utilizing the BRATS dataset, this research aims to develop a convolutional neural 

network (CNN) algorithm for the automated segmentation and categorization of brain tumors. 

1.3 Significance of the Research 

 The research addresses the formidable challenges in brain tumor segmentation and classification using 

MRI by acknowledging the inherent variability in tumor characteristics among patients. Its emphasis on 

combining various MRI modalities and using deep learning techniques shows a dedication to improving 

precision and dependability in the intricate process of tumor analysis. By exploring the practical application 

of a convolutional neural network (CNN) on the BRATS dataset, the research contributes to the 

advancement of automated, precise, and efficient brain tumor segmentation, holding potential implications 

for improved medical decision-making and treatment efficacy. 

2. LITERATURE REVIEW 
 The objective of this section is to provide a brief overview of the research conducted on the segmentation 

and classification of brain tumors, with a primary focus on neural network approaches. 

 Pereira et al. [4] introduced an advanced Convolutional Neural Network (CNN) architecture that utilizes 

3x3 convolutional kernels. The network encompassed three primary stages: preprocessing, classification, 

and postprocessing. In preprocessing, they executed bias field correction, intensity normalization, and data 

augmentation. Each sequence underwent intensity normalization using the z-score approach and bias field 

correction using the N4ITK method. Their study demonstrated the substantial impact of data augmentation 

with adequate preprocessing. Notably, the HGG architecture consisted of 11 layers, surpassing the 9 layers 

of the LGG architecture. Both architectures comprised convolutional layers, followed by pooling layers and 

concluded with fully connected layers. Post-processing relied on a threshold-based technique, with the 

utilization of LReLU activation as an alternative to ReLU. The proposed CNN yielded the following results 

on the BRATS 2013 dataset: 80% for complete tumor, 83% for core tumor, and 77% for enhancing tumor 

regions. 

 In a separate study, R. Lang et al. [5] presented a CNN-based model for brain tumor segmentation across 

multiple modalities. This CNN architecture featured four pairs of convolutional layers with downsampling 

layers, culminating in a single fully connected layer. Input images were divided into three distinct patch 

sizes: 28x28, 12x12, and 5x5. Particularly, the model with a patch size of 28x28 showed better accuracy. 

The training was performed on BRATS 2013 data using the 28x28 patch size, with image segmentation 

into five distinct regions. The experiments highlighted the superior performance of deeper neural networks 

with larger patch sizes, culminating in a dice score of 0.88. 



 

MACHINES AND ALGORITHMS, VOL.001, NO.03, 2022                                                                        000014 

 Moreover, R. Sauli and colleagues [6] introduced a novel fully automated ensemble learning approach 

for the segmentation and classification of brain tumors. Their methodology employed three end-to-end 

incremental deep Convolutional Neural Networks (CNNs) known as 2CNet, 3CNet, and EnsembleNet. The 

initial two networks employed parallel architecture for feature extraction, while EnsembleNet amalgamated 

the outcomes of both networks. An innovative training strategy was employed, monitoring hyperparameters 

to enhance the training process. Experiments conducted on the BRATS-2017 dataset, without post-

processing, yielded an average dice score of 0.88 for the complete tumor region. 

 In their work [7], H. Dong et al. introduced a brain tumor segmentation approach employing a 2D UNet 

architecture built upon deeper convolutional networks. Each modality underwent standardization through 

z-score normalization, resulting in a mean of 0 and a standard deviation of 1 for the data. The methodology 

included the development of a unique loss function called Soft Dice, the use of cross-validation, and a wide 

range of data augmentation techniques. Subsequently, the proposed model underwent testing and evaluation 

using the BRATS 2015 dataset, focusing exclusively on two tumor subregions, namely, complete and core. 

Remarkably, this model achieved Dice scores of 86% for Whole Tumor (WT), 86% for Core Tumor (CT), 

and 65% for Enhancing Tumor (ET). 

 In a separate study [8], Wang et al. presented a convolutional neural network (CNN)-based cascaded 

architecture designed to identify brain tumor subregions through a divide-and-conquer strategy. This 

architecture featured three networks WNet, TNet, and Enet each structured similarly, with one dedicated to 

each tumor subregion. These networks were made up of many convolutional filters, each with a sizable 

encoder and a simple decoder. The approach utilized residual connections, multi-view fusion, and an 

ensemble of three networks from orthogonal viewpoints. Notably, the use of smaller convolution kernels 

(1x1x3) and (3x3x1) instead of (3x3x3) kernels contributed to computational efficiency and memory 

conservation. The output of the preceding network served as input for the subsequent one. This cascaded 

approach yielded Dice scores of approximately 0.7859 for ET, 0.9050 for WT, and 0.8378 for CT, as 

evaluated on the BRATS 2017 dataset. 

 Lastly, M. Havaei et al. [9] introduced a novel cascaded network architecture for segmentation. This 

model concurrently leveraged local and global features through two distinct pathways based on 

convolutional neural networks (CNNs). One pathway employed small filters to extract local features, while 

the other employed large filters for global features. To predict the tumor location, the outputs from both 

paths were combined into a single fully connected layer. Preprocessing steps encompassed normalization 

and bias field correction, while a two-phase training procedure was employed to address tumor label 

imbalance. The cascaded network's performance was assessed using the 2013 dataset from BRATS, 

yielding final scores of approximately 0.81 for WT, 0.72 for CT, and 0.58 for ET, respectively. 

 Kamnitsas et al. [10] introduced an innovative approach that aggregates various neural networks to 

achieve enhanced performance. Their approach combines two 3D U-Net models, three 3D Fully Connected 

Network (FCN) architectures, and two DeepMedic models to achieve robust and precise segmentation. 

Each model is trained independently, and at the end of the procedure, their individual segmented forecasts 

are fused. The study incorporates diverse intensity normalization and data augmentation techniques to 

optimize performance. As a result, this approach, termed EMMA, demonstrates superior generalization 

capabilities, yielding scores of 72.9, 88.6, and 78.5 for ET, WT, and CT, respectively, when applied to the 

BRATS 2017 dataset. 

 F. Chen et al. [11] introduced DU++, an innovative network architecture that combines the strengths of 

Half DenseNet (HDU) and UNet++. This design successfully handles a sizable number of factors, 

accommodating the complexities of intricate medical imaging.  DU++ optimizes the architecture by 

reducing parameter count and implementing feature fusion. It incorporates a series of bridges at varying 

semantic levels, departing from UNet++'s original lengthy connections. The model achieved notable scores 

of 84.9 for dice score, 80.6 for positive predictive value (PPV), and 78.0 for sensitivity when evaluated on 

the BRATS dataset 2015. 
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 Isensee et al. [12] demonstrated the efficacy of a well-trained UNet network with carefully selected 

hyperparameters. By training the baseline UNet on larger patches, they improved its ability to capture 

contextual data. Additionally, their approach encompassed region-based training, preprocessing techniques, 

additional training data utilization, postprocessing procedures, and a combination of diverse loss functions. 

This refined U-net yielded impressive dice scores of 77.88 for ET, 87.81 for WT, and 80.62 for CT on the 

testing dataset. 

 L. Sun et al. [13] presented a comprehensive framework employing multiple CNN architectures. They 

employed an ensemble learning approach, integrating three distinct 3D CNN architectures: Cascaded 

Anisotropic Convolutional Neural Network (CA-CNN), DFKZ Net, and U-Net. Their preprocessing steps 

encompassed intensity normalization and augmentation. The performance evaluation used the BRATS 

2018 dataset for training, validating, and testing to show that the ensemble model outperformed individual 

ones. 

 McKinly et al. [14] introduced a group of classifiers based on the DeepSCAN structure, which is a 

variation of DenseNet employing dilated convolutions to extend the receptive field while managing high 

memory usage. These dilated convolutions were used to build a UNet framework. Despite its advantages, 

this architecture's substantial memory requirements limit its depth, batch size, and input dimensions. The 

study introduces a novel loss function, Label-Uncertainty Loss, built upon binary cross-entropy (BCE). 

They utilized a cascaded network for the separation of the entire tumor, combined with data augmentation 

techniques such as shifting, rotating, and scaling, as well as intensity standardization for preprocessing. 

Additionally, they applied a threshold-based post-processing approach. This architecture achieved the 

highest scores of 0.797, 0.903, and 0.854 for ET, WT, and CT, respectively, on the BRATS 2018 dataset. 

 Y. Ding and colleagues [15] introduced the Residual Dilated Network with Middle Supervision (RDM-

Net), which combines the Residual Network (ResNet) and dilated convolutions. ResNet helps enable deeper 

networks by addressing gradient vanishing, while dilated convolutions provide an extended receptive field 

without spatial dimension reduction. The design consists of residual dilated blocks (RD-Blocks), a spatial 

fusion block, and a middle supervision block. They also introduced a new loss function called Multi-

Hierarchical Loss (MHL), based on focal loss, to handle class imbalance. Z-score standardization is applied 

for preprocessing. This model achieved a final score of 0.86, 0.71, and 0.63 for complete, core, and 

enhanced tumor subregions, respectively, on BRATS 2015. 

 Y. Wang and colleagues [16] introduced the Wide Residual and Pyramid Pool Network (WRN-PPNet), 

which merges wide residual networks and pyramid pool networks (PPN). PPN encompasses three pooling 

paths, end-to-end without post-processing, consisting of modules, feature fusions, and scale recovery. The 

architecture includes a Wide Residual Network (WRN) module with convolution layers and ResNet blocks, 

a Pyramid Pool Network (PPNet) with three pooling layers, and a scale recovery module with convolutions 

and deconvolutions. Preprocessing involves intensity normalization (zero mean and unit variance) and data 

augmentation techniques such as flipping, rotation, shifting, and shear. This model achieved scores of 0.94 

(mean dice), 0.92 (sensitivity), and 0.97 (positive predictive value) using BRATS 2015. 

 G. Wang and colleagues [17] presented a cascaded neural network with uncertainty estimation, which 

divides the multi-class problem into simpler binary sub-problems. The network comprises WNet, TNet, 

and ENet, which are responsible for segmenting the whole tumor, and tumor core, and enhancing the tumor, 

respectively. They use bounding boxes for cropping each tumor sub-region. WNet and TNet share a 

network structure with a larger receptive field compared to ENet. These networks incorporate residual 

connections, dilated convolutions, and multi-scale prediction. Test and training time augmentation, along 

with intensity normalization, are employed. All networks are trained in three orthogonal planes. This 2.5D 

neural network reduces memory consumption, model complexity, and receptive fields, resulting in 

improved segmentation accuracy. This method achieved mean dice scores of .786, .905, and .838 for ET, 

WT, and CT, respectively, on the 2017 BRATS dataset. 

 D. Liu et al. [18] introduced the Dilated Convolution Refine (DCR) network, comprising two 

components: an encoder with ResNet, a DCR module, and downsampling convolutional layers, and a 
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decoder with upsampling deconvolution layers. Cross-entropy and content prediction loss functions are 

combined to create a new loss function using the DCR structure, which includes both local and global 

characteristics. Their experiments were conducted using the BRATS 2015 dataset. 

 R. Zheng et al. [19] introduced a 3D Convolutional Neural Network (CNN) for the segmentation of 

brain tumors. They obtained both local and global features through two separate pathways, one using 

48x48x48 patches and the other using 28x28x28 patches. Each pathway was composed of convolutional 

layers and two dense blocks, with each dense block containing 6 convolutional layers. The application of 

dropout and pooling layers reduced the characteristics of the dense blocks. Local and global features were 

concatenated before the final convolutional layer. Preprocessing involved Z-score normalization and 

N4ITK techniques, and the BRATS 2018 dataset was used for evaluation. Their achieved scores 

were .87, .84, and .81 for CT, CT, and ET regions, respectively. 

 This Paper [20] introduced a technique merging fully convolutional neural network (FCNN) and 

conditional random fields (CRF) implemented as a recurrent neural network (RNN) within a single deeper 

network with FCNN. Preprocessing included bias field correction using the N4ITK method and intensity 

normalization with the z-score method. A threshold-based post-processing approach was also employed. 

For the purpose of segmenting brain tumors, three models were trained in axial, coronal, and sagittal views. 

The model evaluation utilized BRATS 2013, 2015, and 2016 datasets, demonstrating competitive results 

across three imaging modalities (Flair, T1, and T2). 

 In this Research, the authors [21] proposed combining the One-Pass Multi-task Network (OM-Net) and 

the Model Cascade baseline (MC-baseline) and their respective variations. They developed deeper 

architectures to capture contextual and attentive information based on OM-Net and MC-baseline. OM-Net, 

a single deeper neural network, concurrently handles three sub-tasks in a single pass. Both models 

underwent enhancements in multiple aspects, including deeper OM-Net, the incorporation of dense 

connections, the addition of an attention block, and the integration of multi-scale context information. To 

increase segmentation accuracy, OM-Net and its variations were individually trained and then their 

predictions were combined. The pretreatment and post-processing phases were included in the study as well. 

This architecture yielded mean scores of .81, .91, and .87 for ET, WT, and CT, respectively, using the 

BRATS 2018 dataset. 

 A. Myronenko [22] introduced an automatic semantic neural network architecture based on an encoder 

and decoder convolutional neural network. This architecture featured an expanded encoder section to 

extract deeper features and a scaled-down decoder section to reconstruct the original mask. The encoder 

section incorporated ResNet blocks comprising convolutional layers, batch normalization layers, ReLU 

activations, and skip connections. The decoder block mirrored the encoder block but included a single block 

at each level. To reconstruct the original image, an extra encoder branch was also used. This study 

introduced a novel loss function that combined soft dice loss and VAE penalty. Z-score normalization was 

applied solely to non-zero voxels, complemented by various augmentation techniques for preprocessing, 

and postprocessing involving Conditional Random Fields (CRF). The final prediction was generated by 

averaging the outputs of 10 trained models. This architecture achieved mean dice coefficient scores 

of .84, .91, and .87 for ET, WT, and CT, respectively, using the BRATS 2018 dataset. 

 F. Isensee et al. [23] introduced a modified UNet network architecture for brain tumor segmentation. 

Their preprocessing steps included z-score normalization, and the architecture was designed to process 

large patch sizes of 128x128x128 voxels. Extensive data augmentation techniques were employed during 

training, including random rotations, random scaling, elastic deformation, and gamma correction. 

Augmentation was also applied during model testing. The evaluation was conducted using the BRATS 

2015 and 2017 datasets, resulting in dice coefficient values of .90, .80, and .73 for WT, CT, and ET, 

respectively. 
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Authors BRA

TS 

Pre- 

Processing 

Segmentation Technique Post- 

processing 

Result (DSC Score) 

CT ET WT 

[4] 2013 

2015 

-Intensity normalization 

-Patch normalization 

-Data augmentation 

-Bias field correction 

Deeper Convolutional Neural 

network (CNN) with 3x3 kernel 

Threshold 0.83 0.77 0.88 

[5] 2013 -Intensity normalization Convolutional Neural Network 

(CNN) of different scales 

-- -- -- 0.88 

[6] 2017 -- Ensemble Net of 2CNet and 

3CNETbased on CNN 

-- -- -- 0.88 

[7] 2015 -Z-score normalization 

-Data augmentation 
2D U-Net -- 0.86 0.65 0.86 

[8] 2018 -Intensity normalization 

-Data augmentation 

Cascade of WNet, TNet and 

ENet 

CRF 0.84 0.77 0.91 

[9] 2013 -Intensity normalization 

-Bias field correction 

Dual path cascaded CNN Connected 

components 

0.72 0.58 0.81 

[10] 2017 -Intensity normalization 

-Data augmentation 
Ensemble of Multiple Models 

and Architectures (EMMA) 

CRF 0.79 0.73 0.89 

[11] 2015 -Batch normalization DenseNet + U-Net -- -- -- 85 

[12] 2018 -Intensity Normalization Modified U-Net Thresholding 0.81 0.78 0.88 

[13] 2018 -Intensity normalization 

-Data augmentation  
Ensemble of 3 different CNN 

architectures 

-- 0.85 0.81 0.91 

[14] 2018 -Intensity normalization 
-Data augmentation 
-Skull Stripping 

Ensemble of densely connected 

CNNs with dilated 

convolutions 

-Thresholding 0.85 0.80 0.90 

[15] 2015 -Z-score normalization Residual networks with dilated 

convolutions 

-- 0.86 0.63 0.71 

[16] 2015 -Data augmentation 
-Intensity normalization 

Wide residual network and 

pyramid pool network (WRN-

PPNet) 

-- -- -- 0.94 

[17] 2017 

2018 

-Intensity normalization\ 

-Data augmentation 
Triple cascade CNN with 

hierarchical tumor sub-regions 

-Conditional 

random forest 

(CRF) 

0.84 0.79 0.91 

[18] 2015 -Data augmentation Dilated Convolutional Refine 

(DCR) network 

-- 0.62 0.68 0.87 

[19] 2018 -Intensity normalization 

-Bias field correction 

Two pathway hyper-dense 

convolutional neural networks 

-- 0.84 0.81 0.87 

[20] 2013 

2015 

2016 

-Intensity normalization 

-Bias field correction 
Integration of FCNN and CRF 

as Recurrent Neural Network 

-Simple 

thresholding 
-3D CRF 

0.87 0.83 0.78 

[21] 2018 -Intensity normalization  Ensemble of OM-Net, MC-

baseline and its variants 

-Threshoding 0.87 0.81 0.91 

[22] 2018 -Intensity normalization 

-Data augmentation 
Ensemble of ten encoder-

decoder architectures 

-Conditional 

random field 

0.87 0.82 0.90 

[23] 2015 

2017 

-Intensity normalization 

 
Modified U-Net with extensive 

augmentation 

-- 0.80 0.73 0.90 

3. Research Methodology 

 This section presents the research methodology used to address the segmentation and classification of 

brain tumors. The approach was developed to satisfy the segmentation requirements of the BRATS 

competition. The approach was designed to meet the segmentation requirements of the BRATS competition, 

facilitating a straightforward comparison with other BRATS techniques. Figure 1 illustrates the adopted 

approach for addressing the challenge. 
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Figure 1: Research Methodology 

3.1 Dataset Description 

 In this study, BRATS 2015 dataset is used to train, validate, and test the model. The BRATS 2015 

dataset was chosen for the study because it is a commonly used benchmark in medical image analysis and 

provides a uniform framework for impartial assessment. The suggested brain tumor segmentation and 

classification algorithm is proven to be reliable and applicable in real-world scenarios by its varied 

collection of multimodal MRI data and incorporation of difficult instances. The are two sets of data in this 

dataset: train data and test data. 220 HGG patients and 54 LGG patients make up the training data. Four 

modalities—T1, T1c, T2, and FLAIR along with associated ground truths are available for every patient. 

The shape of the four modalities and their respective ground truths is 155x240x240. Except for ground truth, 

the testing data set consists of 110 patients across four modalities. Voxels in an image are categorized into 

five groups using the numbers 0, 1, 2, 3, and 4. Different parts of the brain tumor are represented by each 

numeric labeling. 

Label 0: This label corresponds to the background portion. 

Label 1: This label corresponds to the necrosis portion of the brain tumor. 

Label 2: This label corresponds to the edema portion of the brain tumor. 

Label 3: This label corresponds to the non-enhancing tumor. 

Label 4: This label corresponds to the enhancing tumor. 

The final outcomes of brain tumor segmentation and classification are evaluated in three specific 

subregions: 
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Whole Tumor: This includes all labels except label 0, representing the entire tumor. 

Tumor Core: This comprises label 1 (necrosis), label 3 (non-enhancing tumor), and label 4 (enhancing 

tumor), representing the central tumor region. 

Enhancing Tumor: This is represented by label 4 (enhancing tumor) and specifically focuses on the 

enhancing part of the tumor. 

In this study, only HGG (High-Grade Glioma) data is used for training the proposed model. 

 

Figure 2: Four different modalities and corresponding ground truth of HGG in the BRATS dataset 

3.2 Preprocessing 

 Preprocessing plays a pivotal role in enhancing the efficacy and competitiveness of brain MRI image 

segmentation model. This phase involves taking several crucial steps to prepare the data for training. Brain 

MRI images in MHA file format from disk using the SimpleITK library. These MRI images, which are 

originally 3D and sized at 155x240x240, are transformed into 2D slices of 240x240, resulting in 155 slices 

per image. Subsequently, each slice is further cropped to a size of 192x192. After cropping, min-max 

normalization is applied to handle variances in image intensities, establishing uniform pixel value ranges 

across the dataset. The four corresponding clipped and normalized modalities are stacked slice by slice to 

generate the final input form (192x192x4) for the model. Additionally, the data format is converted from 

MHA to numpy (npy), and the preprocessed data is saved on disk. 

 Furthermore, addressing the issue of empty slices in the BRATS 2015 dataset, which appear at the 

beginning and end of all four brain MRI sequences, as well as in the ground truth data. These empty slices 

not only require a lot of training time and memory, but they also lack important data. To mitigate these 

challenges, these empty slices were removed, resulting in a significant reduction in the dataset size by 

approximately 50%. 

Table 1: Training and testing dataset summary 
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3.3 Proposed Architecture 

 The proposed model leverages the principles of two well-established Convolutional Neural Network 

(CNN) architectures, namely the Residual Network (ResNet) and U-Net, complemented by an attention 

mechanism. As seen in Figure [insert figure number], this model includes a variety of blocks and layers. 

 

Figure 3: Proposed Model 

 The proposed model is divided into three parts: Downsampling path, Bottleneck and Upsampling Path 

3.3.1 Downsampling Path 

 This pathway comprises four ResConvo Blocks (RC Blocks), denoted as block 1 through block 4, with 

each block being succeeded by precisely one pooling layer. 

3.3.2 Bottleneck 

 The bottleneck section comprises a single RC Block, which is not followed by a pooling layer. Within 

this RC Block, the downsampling path concludes, and the upsampling path commences. 

3.3.3 Upsampling Path 

 Similar to the downsampling path, the upsampling path comprises four RC Blocks. In addition to RC 

Blocks, this pathway incorporates gating signals, attention gates (AGs), upsampling layers, concatenation 

layers, and corresponding skip connections from the downsampling path. 

3.4 Training Parameters 

 After removing empty slices, the original dataset was reduced by approximately 50%. This reduced 

dataset was then divided into three parts: training data, validation data, and testing data, with proportions 

of 70%, 15%, and 15%, respectively. The proposed model was configured with a batch size of 10 and 

underwent training on the training data for a total of 150 epochs. Throughout the training process, the 

model's performance was continuously assessed using validation loss. At the end of each epoch, only the 

weights of the best-performing model were saved. For optimization, the Adam optimizer was employed 

with a learning rate of 0.001, and categorical cross entropy was chosen as the loss function. Detailed 

information regarding the training hyperparameters of the proposed model can be found in Table 2. 
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Table 2: Hyperparameters of Proposed Model 

 

4. Experimental Analysis and Results 

 The implementation of the proposed model was carried out using the Keras and TensorFlow libraries. 

Throughout the development process, multiple experiments were conducted on both the training and 

validation datasets, aiming to identify optimal parameters that would yield the desired performance. Each 

experiment varied a single factor to see how it affected overall model performance. The majority of the 

hyperparameters included in the proposed model were chosen using recognized principles in CNN design. 

To gauge the effectiveness of the trained model, assessed by using various metrics, including training 

accuracy, validation accuracy, training loss, and validation loss. Upon completing the training process, the 

final model weights were saved. During the testing phase, these saved weights were loaded into the system 

to facilitate the prediction of tumor classes. After conducting an extensive array of experiments, the ultimate 

hyperparameters and their corresponding values have been compiled and are presented in Table 3 

Table 3: Parameters and hyper-parameters of Proposed Model 
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4.1. Final loses  

 

Figure 4: Training Results (Training and Validation Losses) 

4.2. Final Accuracies 

       

Figure 5: Training Results (Training Accuracy and Validation Accuracy) 

4.3. Test Scores 

Dice score, sensitivity, and positive predictive value (PPV) are metrics that span the range from 0 to 1, with 

a dice value of 0 signifying complete inaccuracy in the predictions made by the proposed model concerning 

the ground truth. A dice score of 1 indicates that the suggested model gives completely accurate predictions, 

matching the ground truth with 100% precision. The performance evaluation of the proposed model is 

conducted through online testing via the BRATS Challenge 2015 platform, and the resulting test scores are 

presented in Table 5.4 for reference. 
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Table 4: BRATS 2015 test scores 

 

4.4. Some Predictions of Trained Model 

 Below, several predictions made by trained model for brain tumors of varying sizes. Each prediction is 

accompanied by the display of four input modalities and one corresponding ground truth. 

4.4.1 Small-Sized Tumor Prediction 

 

Figure 6: Small-sized tumor prediction 
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4.4.2 Medium-Sized Tumor Prediction 

 

Figure 7: Medium, sized tumor prediction 

4.4.3 Large-Sized Tumor Prediction 

 

Figure 8: Large-sized tumor prediction 

 In this section, an in-depth examination of select outcomes generated by proposed model. The findings 

show that the model has significantly improved accuracy in identifying the complete boundaries of medium 

and large-sized tumors, as shown in Figures 7 and 8. However, it is noteworthy that the model's performance 

is relatively less satisfactory when tasked with precisely localizing core and enhancing tumors, primarily 

owing to the inherent challenge posed by their often indistinct and ambiguous boundaries. 
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5. Conclusion 

 The process of brain tumor segmentation and classification unfolds through a structured sequence of 

five key stages: data acquisition, preprocessing, model training, post-processing, and evaluation. Notably, 

this study adheres to the same pipeline but omits the post-processing step. The training dataset utilized 

comprises 220 High-Grade Gliomas (HGGs) extracted from the BraTS 2015 dataset, while the 

preprocessing phase employs the Min-Max normalization technique. This research introduces an automatic 

brain tumor segmentation and classification technique rooted in Convolutional Neural Networks (CNNs), 

drawing inspiration from UNet, ResNet, and attention gates. Extending beyond this inspiration, the study 

integrates elements such as skip connections, residual connections, gating signals, and attention gates to 

enhance information propagation. Through the judicious usage of attention gates, the primary goal is to 

promote focused feature propagation and augment the selection of relevant characteristics. Evaluation of 

the proposed model is carried out on the BraTS 2015 testing dataset, encompassing 110 Low-Grade 

Gliomas (LLGs). Experimental findings underscore the promising performance of the model in addressing 

the challenges of brain tumor segmentation and classification. 
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