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Abstract: Hyperspectral imaging is a technology used to capture images over a 

broad range of wavelengths, aiding in the identification of materials based on their 

distinct spectral signatures. This method possesses capabilities such as detecting 

various materials, penetrating obscurants like smoke, and providing detailed 

insight into material composition. The classification of hyperspectral data involves 

labeling pixels or spectrum ranges on a surface according to their reflective 

attributes. This task remains challenging due to the data's high dimensionality and 

the presence of mixed pixels, occurring when different objects share a pixel. 

Challenges arise from factors like environmental variations, lighting, and 

structural conditions, affecting classifier accuracy and generalization. Leveraging 

the power of deep learning, our novel BZNet (a customized SegNet model) 

introduces an innovative deep fully convolutional neural network architecture for 

pixel-wise semantic segmentation. The BZNet model enhances the decoder by 

incorporating skip connections to integrate hierarchical feature maps from the 

encoder, aligning them with high-resolution input feature maps for precise 

semantic classification. Extensive testing on various datasets, including 

combinations thereof, reveals that our BZNet model outperforms SegNet in terms 

of accuracy, memory usage, and computational speed. Key aspects of our research 

include the creation of a comprehensive training dataset, drawing from online 

resources such as the Indian Pines, Salinas, and Pavia University datasets. Multiple 

classification algorithms, including SegNet, Transnet, HyperNet, and ResNet50, 

were employed, coupled with various feature extraction methods like Gabor and 

Laplacian of Gaussian filters. Through rigorous experimentation, we identified the 

Unet algorithm with the conv2d filter extraction as the most effective. Notably, we 

achieved remarkable accuracy rates of 97.78% for Indian Pines, 96.67% for 

Salinas, and an impressive 99.22% for Pavia University classification. These 

findings underscore the efficacy of our proposed hyperspectral imaging 

classification system, which holds promise for a wide range of applications. The 

integration of deep learning techniques, careful dataset curation, and meticulous 

experimentation has yielded a robust and accurate solution for material 

identification using hyperspectral data. 

Keywords: Hyperspectral Imaging, Deep Learning, Semantic Segmentation, 

Material Classification, BZNet Model. 

1 Introduction 

 Hyperspectral imaging (HSI) has emerged as a pivotal technology in the realm of remote sensing, offering 

the ability to capture images spanning a broad spectrum of wavelengths [1]. This technique facilitates the 
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identification of diverse materials and objects based on their distinctive spectral signatures [2]. The process 

of hyperspectral classification involves the assignment of labels to spatial and spectral features within data, 

aiming to comprehend their interconnectedness rather than segregating them [3]. In the context of remote 

sensing, HSI classification poses a significant challenge, and this study focuses on addressing it 

comprehensively. 

 The challenge of hyperspectral image (HSI) classification for remote sensing stands as the central focus 

of this study. HSI classification is a critical domain within data science and computer vision, tasked with 

the holistic categorization of both spatial and spectral features in data, without isolating them. This 

challenge is particularly relevant within remote sensing, where HSI classification presents unique 

complexities. 

 The motivation behind this research is twofold. Firstly, the scarcity of training data for remote sensing 

applications poses a significant hurdle [4]. Secondly, the complex task of simultaneously managing spatial 

and spectral features necessitates innovative approaches [5]. Despite ongoing efforts, the intricacies of 

hyperspectral classification persist, driving the need for comprehensive solutions. The primary objectives 

of this research are as follows: 

• Dataset Combination: Develop a classification system capable of effectively utilizing combined 

datasets, contributing to improved accuracy and generalization. 

• NPZ Slices and Dimensionality Reduction: Implement NPZ slices and dimensionality reduction 

techniques to enhance dataset manageability and facilitate a unified classifier system. 

• Unified Classifier System: Create a unified classifier system tailored to both combined datasets 

(Indian Pines, Salinas, Pavia University) and individual datasets. 

• Merged Synthetic Dataset: Train and test the proposed classifier on a merged synthetic dataset, 

evaluating its performance against shuffled combined datasets. 

• Performance Evaluation: Thoroughly evaluate the performance of the proposed system using a 

diverse set of metrics, showcasing its effectiveness in hyperspectral image classification and 

semantic segmentation. 

 The research study offers several significant contributions: 

• Combination of Multiple Datasets: The integration of multiple datasets enhances the classification 

model's robustness and generalization capabilities. 

• BZNet Architecture: The creation of the BZNet architecture, an extension of the SegNet model, 

introduces a deep fully convolutional neural network framework for pixel-level semantic 

segmentation. 

• Enhanced Classification with Skip Connections: Incorporating skip connections in BZNet's 

decoder enhances the fusion of hierarchical feature maps from the encoder, elevating semantic 

classification accuracy. 

• Memory Management: Despite increased trainable parameters, memory constraints are effectively 

managed through strategic max-pool layer implementation. 

• Optimized Pre-Processing: The study undertakes various pre-processing operations, converting 

hyperspectral datasets into NPZ format while addressing high-dimensional data challenges. 

 Through an exploration of hyperspectral imaging, classification challenges, the innovative BZNet 

model, research motivations, problem statements, objectives, and contributions, this study aims to advance 

the fields of remote sensing and computer vision. 

2 Literature Review 

 Hyperspectral imaging has become a dynamic field that connects remote sensing and computer vision, 

showing incredible promise. Hyperspectral sensors can gather detailed information about colors and light 

across a wide range, making them useful for many things. They help us understand the environment and 

find minerals, among other applications. However, handling this complex data to classify and understand 

it accurately is tough. This challenge has led researchers to explore advanced methods, especially in 
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machine learning and deep learning. This review explores how hyperspectral images are classified, looking 

at the difficulties of dealing with lots of information, mixed-up data, and how deep learning helps solve 

these issues. 

2.1 Machine Learning Models 

 Remotely sensed hyperspectral (HS) images, due to their extensive coverage and multi-channel spectral 

data, serve as a valuable resource for researchers and scientists. Efforts have been directed towards 

harnessing the hidden information within these images, employing diverse machine learning techniques. 

Support Vector Machine (SVM) classifiers, for instance, utilize spectral data for band-based classification 

[6], where each band's spectral range forms the input feature matrix. Another approach, K-Nearest 

Neighbors (KNN) and its variations [7], solely exploit spectral attributes as pixel properties. Spectral data's 

significance in achieving reasonably accurate classification has been recognized in research. Integrating 

spectral and contextual spatial information has proven advantageous, especially given the similarity of 

neighboring pixels' spectral features within an HSI. Multispectral images were the primary focus of the 

earliest attempts at integrating spectral and spatial characteristics [8][9]. Later, Pessaries et al. unveiled a 

brand-new technique for integrating geographical information called Morphological Profiles (MPs) [10]. 

MPs employ morphological techniques on grayscale images using a fixed-shape structural component, 

yielding opening and closing operations (SE). This method's expansion to multi/hyperspectral images saw 

the introduction of Enhanced Morphological Profiles (EMP) [11] [12]. EMP incorporates MP on principal 

components obtained through Principal Component Analysis (PCA), effectively addressing dimensionality 

and band correlation challenges. 

2.2 Deep Learning Models 

 In recent times, the subject of HS classification has garnered significant attention. This section delves 

into existing methodologies based on deep learning for this purpose. Deep learning techniques have gained 

traction due to their ability to hierarchically acquire data and learn distinctive and meaningful features. The 

automatic extraction and representation of these features have been made possible [13] owing to the 

superior information representation capacity of deep structures. In applications involving classification and 

target detection, the careful design of deep network topologies can substantially improve identification 

accuracy. Considering the extreme specificity and complexity of HS images, it is incredibly difficult to 

extract characteristics from HSI data [14]. To address these obstacles, the adoption of deep learning 

techniques has gained traction in hyperspectral (HS) feature extraction, classification, and target 

recognition. The initial forays into using deep learning for these tasks involved Stacked Autoencoders 

(SAE) and Deep Belief Networks (DBN). However, these methods require reshaping the 3-dimensional 

structure of HSI into 1-dimensional input vectors, leading to the loss of valuable spatial features. In contrast, 

Convolutional Neural Networks (CNN), as indicated by their criteria [15], have proven effective in 

processing unsupervised input HSI and achieving enhanced classification accuracy, unlike SAE and DBN 

[16]. In order to capture the spectral properties of HS, [17] presented a CNN built on a 5-layered network 

to address the problem of HS picture classification. They found that using high-dimensional data 

classifications increased the results of classification. Another method was a 2D-CNN approach, which was 

presented by Yue et al. [18]. By utilizing Principal Component Analysis (PCA), the dimensionality of the 

HS image was decreased while keeping the first three principal components. However, the standalone 2D-

CNN model captures spatial information from neighboring pixels while disregarding spectral information. 

Ghasrodashti et al. [19] devised a robust autoencoder with multiple layers and spatial enhancement 

capabilities, employing an unsupervised approach to extract a multitude of features from HS images. To 

extract spatial and spectral information, they used multi-scale functionality weight training, fuzzy patterns, 

and similarity angle map standards. In addition, Roy et al. [20] suggested a hybrid CNN-based model for 

HS picture classification that integrates spectral and spatial characteristics. They utilized a 2D-CNN for 

spectral feature extraction and a 3D-CNN for spatial data, resulting in the extraction of more abstract 

features. This model makes comprehensive use of both spatial and spectral information in the image. 
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However, it's worth noting that the CNN model has a large number of parameters and requires substantial 

training data and time. 

 A notable challenge in HS image classification is the limited training dataset, which makes the 

classification model susceptible to overfitting and results in poor generalization [21]. To address this, 

Ghasrodashti et al. [22] developed an enhanced sparse classification method for HS images based on a 

hidden Markov random field. By constructing a dictionary with minimal spectral-spatial correlation through 

sparse coding, they improved the objective function of the sparse classifier, yielding favorable results. The 

authors in [23] introduced a novel RPNet aimed at enhancing the computational efficiency of the model. 

This unique approach involves a convolutional kernel layer distinct from the conventional CNN, 

eliminating the need for training through random projection. This not only enhances feature extraction 

capabilities but also reduces computational load. 

 Nonetheless, there are certain limitations in this work. While spatial information within the HS image 

holds significant value, it tends to be overlooked and underutilized. As image processing techniques 

progress [24], spatial elements are becoming increasingly crucial in HS classification. Among the various 

methods for extracting spatial information, Gabor filters have garnered substantial attention due to their 

ability to provide distinctive features. Gabor filters serve as a valuable tool for unsupervised feature 

extraction, particularly in describing texture and spatial characteristics within HS images. As a result, the 

model is less dependent on training data and can extract texture and spatial information [25]. Numerous 

studies have shown that the use of Gabor filters in HSI categorization produces better outcomes. 

 For instance, Feng Xiao et al. [26] improved efficiency and accuracy for HS classification by combining 

a 3-dimensional Gabor filter with an SVM. Wang Liguo et al.'s [27] successful texture feature extraction 

from photos made use of spectral information decomposition through experimental techniques. Following 

dimensionality reduction through PCA, Chen et al. [28] devised a methodology wherein 2-dimensional 

Gabor features were derived from hyperspectral (HS) spectral data. These features were then input into a 

classification model based on 2D Convolutional Neural Networks (CNN). This innovative approach not 

only improved classification accuracy but also mitigated reliance on extensive training datasets and 

eliminated superfluous flattening procedures. 

 Originally designed for the purpose of segmenting medical images, the u-net architecture and its 

variations have found applications beyond medicine, extending to fields like hyperspectral (HS) imaging 

and agriculture. This framework stands out as a preferable choice compared to other segmentation methods 

due to its ability to generate high-quality segmented feature maps while working with a limited number of 

samples. This section delves into the existing literature to explore the strategic utilization of u-net topologies 

by researchers. The pioneering work in the realm of end-to-end and pixel-to-pixel classification through 

fully convolutional neural networks (FCNs) was introduced by Log et al. [29]. This innovative approach 

replaced traditional fully connected layers with up-sampling layers, and de-convolution was leveraged to 

maintain the original shape of input images. However, FCN-based models typically exhibit limitations. 

Challenges arise when dealing with smaller objects or grouping together comparable objects from different 

classes, resulting in difficulties for classification [30]. As a consequence, FCN-based networks often 

generate suboptimal segmentation maps. To address this issue, both the U-Net model and the Atrous Spatial 

Pyramid Pooling method (DeepLab) have demonstrated potential in tackling such intricacies [31]. 

Additionally, Conditional Random Fields (CRFs) have been incorporated into FCNs to improve 

segmentation accuracy. For instance, Yu et al. employed dilated convolutions to aggregate context, 

preserving spatial features [32]. To extract multi-scale features, Chen et al. used complex convolutions and 

spatial pooling [33]. Ghiasi et al. introduced Laplacian pyramid reconstruction and refinement to deal with 

low-feature maps [34]. In the pursuit of segmentation, encoder-decoder-based deep architectures [35] such 

as Seg-Net [36] have been adopted, along with CNN pooling techniques. 

 The prowess of u-net architecture shines prominently in the domain of hyperspectral imaging (HSI) 

when it comes to segmentation and classification tasks. U-net topologies incorporate skip connections and 

concatenation algorithms, where up-sampled outputs of equivalent dimensions to the contracting path are 
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concatenated to facilitate effective segmentation. This architectural design facilitates feature extraction 

across multiple scales, allowing the incorporation of additional layers and demanding less training data. 

Notably, Redouane et al. adapted the u-net architecture for pixel-level classification of oceanic eddies, a 

task that typically demands substantial data for conventional CNNs. The extension to deep u-net has been 

harnessed for pixel-level sea-land classification. Despite its remarkable performance, the u-net 

architecture's application in the hyperspectral domain has garnered comparatively less attention, with recent 

research publications addressing this gap. A Multiscale Independent Component Analysis (MICA) for 

hyperspectral image categorization was developed by Ronald Kemker et al. [37]. Their approach focuses 

on learning lower-level features to detect various patterns like bars, edges, gradients, and textures within 

the dataset. They also proposed the Stacked Convolution Autoencoder Transfer Learning (SCATL) 

algorithm, aiming to learn deeper features for identifying components, pixel resolution and channel 

connections, and particles. The authors evaluated these methods on datasets from Indian Pines, Salinas 

Valley, and Pavia University. The Stacked Convolution Autoencoder (SCA) method yielded exceptional 

results, but it demanded more time for training and testing due to the utilization of convolutional neural 

networks in the classification process. 

 Wei Zhu et al. [38] presented a graph-based non-local total variation approach for classification. They 

introduced the primal-dual hybrid gradient approach to handle the variation in their method. 

Sen Jia et al. [39] proposed a classification approach based on learning superpixels. They employed a 

multitask learning algorithm to address limited sample size issues. The process involves dividing a 

hyperspectral image into homogeneous superpixel chunks, applying a 2D Gabor filter to create a Gabor 

Cube, extracting superpixel features, reducing dimensionality using spatial-spectral Schrödinger Eigen 

maps, and finally using SVM for classification on datasets like Indian Pines, Pavia, and Salinas. 

 Yanni Dong et al. [40] described an ensemble learning approach for dimensionality reduction, which is 

followed by support vector machine classification. Their ensemble discriminative local metric learning 

(EDLML) method derives metrics from input samples and their neighbors to create a subspace for metric 

learning. This approach is adaptable to various datasets and not restricted to normally distributed data. It 

aims to transform features from the original space into a lower-dimensional space. 

 Han Zhai et al. [41] introduced a sparse subspace cluster analysis method for classification. Their 

approach assumes that all intensities within a subspace composed of specific pixels share the same value. 

In place of fuzzy c-means, random field clustering, and k-means, they concentrated on sparse subspace 

clustering. The authors used a l2 norm regularizer to provide spatial-spectral metadata to the subspace 

clustering and a four-neighbor approach to achieve spatial homogeneity among pixels. 

 Claudio Persil et al. [42] proposed a kernel-based feature selection (kFS) approach for classification. 

This method selects a subset of consistent and relevant parameters, simplifying data transfer between input 

and output domains. They employed a genetic algorithm for feature selection, which exhibited good 

accuracy with a small number of samples when dealing with non-parametric multi-objective functions. 

 Junshi Xia et al. [43] introduced an ensemble classifier approach called Clustering of Forests for 

hyperspectral image classification. They utilized a range of decision tree classifiers, including random forest 

and rotation random forest, to address the computational complexity associated with multispectral images. 

A novel ensemble method called Rotation Random Forest through Kernel Principal Component Analysis 

(RoRF-KPCA) was proposed, involving KPCA for dividing the feature space into subsets and combining 

the resultant feature sets for classification of HS data. This method aimed to capture high-order statistics in 

the classification process. 

2.3 Discussion 

 The above discussed papers showcase a diverse array of innovative methodologies for hyperspectral 

image classification, utilizing various machine learning and deep learning techniques. These approaches 

highlight the ongoing efforts to leverage the rich spectral and spatial information contained within 

hyperspectral images for accurate and meaningful classification. The adoption of deep learning models, 
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such as Convolutional Neural Networks (CNNs), Stacked Autoencoders (SAEs), and the U-Net 

architecture, underscores the potential of hierarchical feature extraction in handling the complexities of 

hyperspectral data. Furthermore, novel techniques like graph-based non-local total variation, ensemble 

learning with dimensionality reduction, and sparse subspace cluster analysis demonstrate a commitment to 

addressing challenges related to limited training datasets, dimensionality, and spatial-spectral integration. 

These advancements contribute to the growing understanding of hyperspectral image classification and 

pave the way for improved applications in fields ranging from remote sensing and agriculture to medical 

imaging. As this field continues to evolve, researchers are pushing the boundaries of machine learning and 

deep learning to unlock the full potential of hyperspectral data analysis. 

3 Proposed Methodology 

  In the realm of hyperspectral (HS) imaging, which continues to gain substantial popularity, the demand 

for precise and efficient classification techniques has escalated. Conventional classification methods, 

including pixel-based approaches, often prove to be sluggish and imprecise when applied to HS data. Our 

novel HS data classification approach adopts a semantic methodology. By circumventing the intricate and 

time-consuming tasks associated with segmentation, our technique achieves accurate outcomes within a 

considerably shorter duration. After the initial image pre-processing steps, our suggested approach involves 

segmenting hyperspectral (HS) images into npz files. For the purpose of classifying individual sub-pixels 

within the HS image, we utilize a Unet model. The efficiency of our technique in producing precise results 

within a compressed timeframe positions it as an optimal solution for hyperspectral image classification. 

The subsequent section will elaborate on the process of structuring a training image set. 

 Similar to other classification frameworks, our proposed approach for addressing the current issue is 

comprised of five fundamental components. The initial pivotal stage involves capturing the image requiring 

digitization into numerical data. Subsequently, this acquired image is transformed into the designated 

format to align with our pre-processing classification system. The primary goal of this step is to convert the 

input image, whether multiscale or high-resolution, into three-dimensional data that can be swiftly 

processed for classification purposes. Hyperspectral (HS) images that have previously undergone treatment 

are segmented after the pre-processing stage. 

3.1 Image Acquisition 

 The initial phase we introduce marks the inception of our proposed system. To transform the essential 

image data into manipulatable integers, our system initiates by procuring the requisite image data. These 

images are expected to possess a three-dimensional resolution. Upon acquisition within our proposed 

framework, the image is promptly directed to the pre-processing phase for subsequent enhancements. 

3.2 Pre-processing 

 This segment encompasses three principal steps: 

• Resizing the Images 

• Updating Label Values 

• Normalization 

• Implementing Factor Analysis (FA) 

• Saving as npz Files 

3.2.1 Resizing the Images 

 Uniform image dimensions are universally compatible with all deep learning networks. Nevertheless, 

the dataset employed for this investigation comprises images with varying sizes in terms of height and 

width. This challenge can be addressed through one of two methods. The first approach involves padding, 

entailing the addition of supplementary columns and rows to images, thereby standardizing their 

dimensions (e.g., zero padding, constant padding, etc.). However, this approach might lead to heightened 
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computational expenses. The alternative technique, image resizing, mitigates computational burdens by 

proportionally adjusting image sizes to achieve uniformity. In our study, we adopted image resizing, which 

involves scaling input images to dimensions of 256x256 pixels, ensuring consistency across the dataset. 

3.2.2 Updating Label Values 

 As different datasets were amalgamated, it became necessary to modify the dataset labels. This was 

imperative due to the fact that each dataset encompasses a distinct range of classes, spanning from 0 up to 

a specific threshold—such as 16 classes in the context of Indian pines. Consequently, the process of 

updating label numbers was meticulously executed to harmonize the consolidated dataset while ensuring 

label coherence. 

3.2.3 Image Normalization 

 Deep neural network weights are commonly initialized using small random values, typically falling 

within the (0–1) range. Subsequently, these weights are adjusted based on the loss computed through an 

optimization technique. In contrast, the intensity range of input images, often spanning from 0 to 255, is 

significantly wider. Failing to normalize or rescale such images can result in challenges like the emergence 

of exploding gradients. This, in turn, can adversely affect the learning process. To mitigate these concerns, 

input images undergo rescaling before being fed into the network, employing a 0-1 normalization approach. 

This precautionary step helps avert potential issues, thereby contributing to the effective training of the 

network. The tags associated with this context include: MTI: Cardiomegaly, Manual: Cardiomegaly, 

Pulmonary Congestion, 58. 

3.2.4 Implementing Factor Analysis (FA) 

 The amalgamated dataset contains a significant number of elevated frequency ranges, necessitating 

increased computational capacity. However, through the implementation of the Frequency Amplitude's 

High-Spectrum (FA's HS) technique, the dataset's dimensions were effectively reduced while retaining 

essential information. 

3.2.5 Saving as npz Files 

 After completing the previous steps, it's recommended to reprocess or generate new npz files containing 

data and labels to address the resolved challenges effectively. An essential aspect of the proposed approach 

is the pre-processing stage. Its main goal is to convert the acquired image into a suitable format for 

subsequent steps. This entails processing the raw image into npz files for more effective computing, as well 

as duties like noise removal and normalization. 

3.3 Proposed Architecture 

 HSI images are multi-dimensional data cubes or images with high dimensions (w x H x L), where w 

stands for the spatial width of the image, H for the image's height, and L for its spectral dimension. The 3D 

image cube's spectral information is provided by this spectral dimension. It's important to note that the HSI 

data's high spectral dimension results from the reflection of images obtained from limited spectrum bands. 

Due to the interconnected nature of these narrow bands, HSI data becomes complex for many deep learning 

techniques to handle. 

 To address this complexity, a well-known dimensionality reduction technique is employed on HSI data. 

Let's consider the variable O ∈ R^ (w, H, L) to describe the HSI image cube. Here, O represents the actual 

input HSI image, with w as width, H as height, and L as spectral data or depth. The label vector for each 

pixel of the original image "O" is denoted by y = (y (1), y (2), y (3), ..., y(n)) ∈ R^(nC), where n represents 

the number of pixels and C denotes the categories of land covers. 

 The difficulty comes from managing mixed classes with a lot of interclass variation and similarity. In 

order to overcome this, factor analysis (FA) is used on the original image "O" to decrease redundancy in 
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the HSI data. By using FA, the spectral dimension is decreased from L to D while maintaining the spatial 

information. The data cube for the HSI image is represented as P R (w x H x D) after Principal Component 

Analysis (PCA), where P is the low-dimensional input data, H is height, W is width, and D is the new 

spectral band dimension. 

 The proposed framework uses a 3D architecture to categorize pixels that are HS (Hyperspectral). The 

model incorporates encoding and decoding routes using a convolutional neural network (CNN) design. The 

encoding approach transforms HS images and employs convolutional, batch normalization, and pooling 

layers to extract spatial and spectral data. Convolutional layers are used in the decoding process to enlarge 

the image while preserving the same image size as the contracting portion through concatenation. After 

each convolutional block, the design doubles the number of channels at the encoder and cuts them in half 

at the decoder. The 3D model handles spatial and spectral information within a single phase, making use of 

2D convolutional neural networks. 

 The convolutional operation in the model involves the convolution of input data with 3D kernels. The 

convolutional operation is produced by the dot product of the kernel and the input data. Spatial dimensions 

are covered by the kernel when it is run over the input data, and the activation function upholds the model's 

nonlinearity. The model's parameters and kernel weights are supervised trained using the Adam optimizer. 

 The decoder section of the model makes the most contribution, expanding features from the previous 

level to make them stand out more. Skip connections are employed to enhance predictions and reduce loss, 

resulting in clearer outcomes. The final part of the model involves fully connected layers with a softmax 

activation function for multiclass classification. Training utilizes batch normalization with a batch size of 

30 and 200 epochs, using a learning rate of 0.001 for the experiments. 

 

Figure 1: BZNet Architecture 

4 Results and Evaluation 

 We assess the outcomes achieved through the application of our BZNet deep learning architecture to 

hyperspectral (HS) data. Presented below is a concise summary of the model employed in our study, along 

with a presentation of the experimental results: 
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4.1 System’s Description 

Table 1: Specifications of system 

 

4.2 Analytical Experiment 

 In our analytical experiment, we conducted multiple training and testing iterations to optimize 

parameters for desired outcomes. In the first test, we used the UNET final layer on 150 HS scenes. 

The second experiment involved training BZNet from scratch on preprocessed data. We trained 

for 200 epochs, monitoring training and validation loss. After saving weights, we predicted scenes 

using the trained model in the testing phase. 

4.3 Training and Validation Losses 

 

Figure 2: Losses of Training and Validation UNET 
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Figure 3: Accuracy of Training and Validation UNET 

 

 

 Figure 4: Training and Validation Accuracy of BZNet 
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Figure 5: Training and Validation Losses on BZNet 

 The figures show two test images predictions from our suggested model next to the corresponding 

original reports. 

           

 

Figure 6: Predictions of Two Test Images on proposed model 



 

MACHINES AND ALGORITHMS, VOL.001, NO.02, 2022                                                                            000009 

 

4.4 Results 

Table 2: Results evaluation on BZNet and UNET models 

                    

5 Conclusion and Future Direction 

 This research introduces a novel model, BZNet, designed for the semantic segmentation of hyperspectral 

images. Built upon an encoder-decoder architecture, BZNet combines elements from UNET and SegNet. 

In the encoder, BZNet inherits SegNet layers while generating feature maps akin to UNET's encoder. The 

decoder integrates fresh skip connections. To enhance performance and adaptability across memory sizes, 

dimension reduction through factor analysis (FA) is employed. This model serves both segmentation and 

classification purposes. FA is utilized for dimension reduction, but future exploration could involve 

techniques such as PCA or novel methods. Key findings include the model's adaptability to varying image 

sizes and datasets. 

 Future directions should address research gaps. The proposed segmentation system can be adapted for 

classification tasks. Additionally, alternatives like PCA can be explored for HS dimension reduction. Fine-

tuning the network's architecture may optimize computational efficiency. 
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